• Title/Summary/Keyword: Elasto-plastic modeling

Search Result 61, Processing Time 0.028 seconds

A Study on the Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과 관한 연구)

  • Kim, Eun Ra;Iizuka, Atsushi;Kim, You-Seong;Park, Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.5-16
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced compacted soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, occurring from a confinement of the dilative deformation in compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working on the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure for input parameters needed in the elasto-plastic modeling are presented. And to describe the irreversible deformation characteristics of compacted soils during shearing, the subloading yielding surface (Hashiguchi (1989)) to the elasto-plastic modeling is introduced. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.

Numerical Analysis of Confining Effect Due to Geosynthetics Wrapping Compacted Soil Specimen (토목섬유로 보강된 다짐토 공시체의 구속효과에 관한 수치계산)

  • Kim, Eun-Ra;Kang, Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • This paper presents the modeling of geosynthetic-reinforced soils and discusses the reinforcement effect arising from confining the dilatancy deformation of the soil by geosynthetics. A series of compressive shear tests for compacted sandy soil specimens wrapped by geosynthetics are carried out by quantitatively examining the geosynthetic-reinforcement effect, and it occurred from the confinement of the dilative deformation of compacted soils during shearing. In the test, the initial degree of compaction is changed for each series of sandy soil specimens so that each series has different degree of dilatancy characteristics. Herein, the axial forces working to the geosynthetics so as to prevent dilative deformation of compacted soils during shearing are measured. Furthermore, the elasto-plastic modeling of compacted soils and a rational determination procedure of input parameters needed in the elasto-plastic modeling are presented. In this paper, the subloading yielding surface(Hashiguchi(1989)) is introduced to the elasto-plastic modeling which could describe the irreversible deformation characteristics of compacted soils during shearing. Finally, the elasto-plastic finite element simulation is carried out and the geosynthetic-reinforcement effect is discussed.

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

Finite element modeling of rolled steel shapes subjected to weak axis bending

  • Saliba, Najib G.;Tawk, Issam;Gergess, Antoine N.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.161-173
    • /
    • 2018
  • Point bending is often used for cambering and curving structural steel girders. An analytical solution, applicable in the elasto-plastic range only, that relates applied loads to the desired curve was recently developed for inducing horizontal curves using four-point bending. This solution does not account for initial residual stresses and geometric imperfections built-in hot-rolled sections. This paper presents results from a full-scale test on a hot-rolled steel section curved using four-point bending. In parallel, a numerical analysis, accounting for both initial geometric imperfections and initial residual stresses, was carried out. The models were validated against the experimental results and a good agreement for lateral offset and for strain in the elasto-plastic and post-plastic ranges was achieved. The results show that the effect of initial residual stresses on deformation and strain is minimal. Finally, residual stresses due to cold bending calculated from the numerical analysis were assessed and a revised stress value for the service load design of the curved girder is proposed.

Elasto-plastic Analysis of Reinforced Concrete Precast Large Panel Connections by Rigid Element Method (강체요소법에 의한 철근 콘크리트 프리캐스트 대형판 접합부의 탄소성해석)

  • Park, Kang-Geun;Kim, Yong-Tae;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.111-116
    • /
    • 2001
  • This paper is a study on the elasto-plastic analysis of reinforced concrete precast large panel connections by rigid element spring model. In the analysis of rigid element spring model, each collapsed part or piece of structures at limiting state of loading is assumed to behave like rigid bodies. The present author propose new elements for the improement and expansion of the rigid element spring model. In this study, it is proposed how the rigid element method can be applied to the elesto-plastic analysis of precat large panel connections. Some numerical results of analytical modeling and load displacement curves are shown.

  • PDF

A Study on the Estimation of Elasto-Plastic Buckling Loads for Sing1e Layer Latticed Domes by Unit Member Modeling Technique. (단위부재 모델화에 따른 단층 래티스 돔의 탄소성 좌골하중의 산정에 관한 연구)

  • 한상을;이상주;유용주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.290-297
    • /
    • 1998
  • In this paper, we propose to a method to estimate the elasto-plastic buckling for single layer latticed domes. First, we assume that each member consists of the rigid zone and elastic spring at both end joint, the elastic element and three elasto-plastic spring to judge for yeilding the member. Next, the member which has most influence on buckling for structures is determined by a distributed pattern of the strain energy which is calculated through linear eigenvalue analysis. And then, normalized slenderness ratio of the element is derived considering the axial force at elastic buckling load. Later, we execute elasto-plastic nonlinear analysis that based on loading increasement method and displacement increasement method. From this results, we discusses the effect of the joint rigidity and the half open angle $\theta$$_{0}$ on the buckling strength of single layer lattice domes ; (1) how the joint rigidity contributes to the reduction of buckling loads, (2) how the reduction can be interrelated to compressive strength curves in terms of the generalized slenderness for the member most relevant to the overall buckling of domes.s.

  • PDF

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

New Methods of Finite Element Postprocessing for Elasto-Plastic Behavior (탄소성 거동의 유한요소해석 후처리 방법)

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.487-499
    • /
    • 2009
  • The postprocessing technology has been advanced diversely to accommodate the tendency of increasingly refined and complicated practices of finite element modeling in pace with enhanced capabilities of computers and improved algorithm of equation solvers. As a result of such progresses in both hardware and software, it became practically meaningful to inspect and analyze the elasto-plastic behavior using the intermediate results from the increasing number of incremental and iterative processes. This paper is concerned about the new methods of postprocessing with computer graphic visualization of elasto-plastic behavior on the basis of the theoretically reorganized analysis results. This paper proposes a new method of rendering the plastic zone, and new approaches of analyzing and interpreting the elasto-plastic behavior using the graphical information visualized in the form of the yield surface and the stress path, or in the form of the Mohr circles and the failure envelope.

Beam on Elasto-Plastic Foundation Modeling of Tieback Walls (앵커토류벽의 탄소성보 해석에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.81-92
    • /
    • 1998
  • A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and tested. An instrumented full scale tieback wall in sand was constructed at the National Geotechnical Experimentation Bite located on Texas A&M University. The experimental earth pressure deflection relationship (p-y curves) was developed from the measurements. The construction sequence was simulated in the proposed method. The conceptual methodology of an anchored wall design was introduced by using the proposed method. The proposed method was evaluated with the measurements of case histories in sand and clay. A parametric research was performed to study the most influencing factors for the proposed method. It is concluded that the proposed method represents a significant improvement on the prediction of bending moments and deflections of the properly designed walls.

  • PDF