• 제목/요약/키워드: Elasticity Momentum

검색결과 9건 처리시간 0.025초

가상해저공간에서 Artificial Fish의 사실적인 행동 생성을 위한 운동학적 접근 (Kinematic Access For Generation of Realistic Behavior of Artificial Fish in Virtual Merine World)

  • 김종한;정승문;신민우;강임철
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.308-317
    • /
    • 2008
  • 실시간으로 렌더링 되는 인터렉티브한 3D 가상공간에서 객체들은 일정한 조건을 고려한 이 벤트 발생에 따라 상호작용이 가능하다. 그러나 이러한 상호작용의 행동 표현을 위해서는 이벤트의 조건과 행동 패턴들이 거의 일대일 대응되어야 한다. 이는 미리 규정한 패턴 수가 미흡할 때 사실적인 행동을 하지 못하며 다양한 행동패턴의 표현을 위해서는 그 만큼 고려되어야하는 이벤트의 조건이 늘어나게 되므로 전체 시스템의 복잡도를 증가시키는 문제점을 야기한다. 따라서 본 논문에서는 탄성 모멘텀을 이용한 물리학적 접근 방법을 적용하고 가변형 다중 센서를 이용하여 Artificial Fish의 움직임을 보다 사실적으로 표현할 수 있고 하나의 회피 이벤트에 대해 다양한 행동 패턴 생성이 가능한 새로운 방법을 제시한다.

풍력발전시스템의 유연체 다물체 동역학 시뮬레이션 프로그램 개발 (Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code)

  • 송진섭;임채환;남용윤;배대성
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.50-57
    • /
    • 2011
  • A wind turbine simulation program for the coupled dynamics of aerodynamics, elasticity, multi-body dynamics and controls of turbine is newly developed by combining an aero-elastic code and a multi-body dynamics code. The aero-elastic code, based on the blade momentum theory and generalized dynamic wake theory, is developed by NREL(National Renewable Energy Laboratory, USA). The multi-body dynamics code is commercial one which is capable of accounting for geometric nonlinearity and twist deflection. A turbulent wind load case is simulated for the NREL 5-MW baseline wind turbine model by the developed program and FAST. As a result, the two results agree well enough to verify the reliability of the developed program.

Oldroyd B 유체의 평면 수축 유동에 관한 수치 해석적 연구 (A Numerical Study on the Planar Contraction Flow of Oldroyd B Fluids)

  • 유정열;나양
    • 유변학
    • /
    • 제2권1호
    • /
    • pp.33-45
    • /
    • 1990
  • This study analyzes the planar 4:1 contraction flow of viscoelastic fluids with retardation time using finite volume method. To consider separately the elasticity effect of the viscoelastic fluid without shear thinn-ing effect, Oldroyd B liquid model is adopted for the numerical simulation. Instead of the stream function-vorticity formulation, SIMPLER algorithm with staggered grid system which incorporates primitive variable has been introduced in discretizing the momentum equations. An upwind corrected scheme has been used in discetizing the constitutive equations for the non-Newtonian part of the stress. The size of the corner vortex is shown to be slightly influenced by the Weissenberg number. However as the Weissenberg number is increased the chang-ing of the vortex shape agrees qualitatively well with some experimental studies.

  • PDF

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

ANALYSIS OF A LAMINATED COMPOSITE WIND TURBINE BLADE CHARACTERISTICS THROUGH MATHEMATICAL APPROACH

  • CHOI, YOUNG-DO;GO, JAEGWI;KIM, SEOKCHAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.367-380
    • /
    • 2019
  • A 1kW-class horizontal axis wind turbine (HAWT) rotor blade is taken into account to investigate elastic characteristics in 2-D. The elastic blade field is composed of symmetric cross-ply laminated composite material. Blade element momentum theory is applied to obtain the boundary conditions pressuring the blade, and the plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. For the elastic characteristics a fair of differential equations are derived based on the elastic theory. The domain is divided by triangular and rectangular elements due to the complexity of the blade configuration, and a finite element method is developed for the governing equations to search approximate solutions. The results describe that the elastic behavior is deeply influenced by the layered angle of the middle laminate and the stability of the blade can be improved by controlling the layered angle of laminates, which can be evaluated by the mathematical approach.

기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발 (Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis)

  • 이상우;허진영;김규홍
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.67-74
    • /
    • 2023
  • A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.

복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가 (Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials)

  • 정해창;최민선;양창조
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1222-1230
    • /
    • 2022
  • 로터 블레이드는 조류발전 터빈의 매우 중요한 구성 요소로서, 해수의 높은 밀도로 인해 큰 추력(Trust force)와 하중(Load)의 영향을 받는다. 따라서 블레이드의 형상 및 구조 설계를 통한 성능과 복합소재를 적용한 블레이드의 구조적 안전성을 반드시 확보해야 한다. 본 연구에서는 블레이드 설계 기법인 BEM(Blade Element Momentum) 이론을 이용해 1MW급 대형 터빈 블레이드를 설계하였으며, 터빈 블레이드의 재료는 강화섬유 중의 하나인 GFRP(Glass Fiber Reinforced Plastics)를 기본으로 CFRP(Carbon Fiber Reinforced Plastics)를 샌드위치 구조에 적용해 블레이드 단면을 적층(Lay-up)하였다. 또한 유동의 변화에 따른 구조적 안전성을 평가하기 위해 유체-구조 연성해석(Fluid-Structure Interactive Analysis, FSI) 기법을 이용한 선형적 탄성범위 안의 정적 하중해석을 수행하였으며, 블레이드의 팁 변형량, 변형률, 파손지수를 분석해 구조적 안전성을 평가하였다. 결과적으로, CFRP가 적용된 Model-B의 경우 팁 변형량과 블레이드의 중량을 감소시켰으며, 파손지수 IRF(Inverse Reserce Factor)가 Model-A의 3.0*Vr를 제외한 모든 하중 영역에서 1.0 이하를 지시해 안전성을 확보할 수 있었다. 향후 블레이드의 재료변경과 적층 패턴의 재설계뿐 아니라 다양한 파손이론을 적용해 구조건전성을 평가할 예정이다.

주택유통시장에서 가격거품은 왜 발생하는가?: 소비자의 기대에 기초한 가격 변동주기 모형 (Expectation-Based Model Explaining Boom and Bust Cycles in Housing Markets)

  • 원지성
    • 유통과학연구
    • /
    • 제13권8호
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose - Before the year 2000, the housing prices in Korea were increasing every decade. After 2000, for the first time, Korea experienced a decrease in housing prices, and the repetitive cycle of price fluctuation started. Such a "boom and bust cycle" is a worldwide phenomenon. The current study proposes a mathematical model to explain price fluctuation cycles based on the theory of consumer psychology. Specifically, the model incorporates the effects of buyer expectations of future prices on actual price changes. Based on the model, this study investigates various independent variables affecting the amplitude of price fluctuations in housing markets. Research design, data, and methodology - The study provides theoretical analyses based on a mathematical model. The proposed model uses the following assumptions of the pricing mechanism in housing markets. First, the price of a house at a certain time is affected not only by its current price but also by its expected future price. Second, house investors or buyers cannot predict the exact future price but make a subjective prediction based on observed price changes up to the present. Third, the price is determined by demand changes made in previous time periods. The current study tries to explain the boom-bust cycle in housing markets with a mathematical model and several numerical examples. The model illustrates the effects of consumer price elasticity, consumer sensitivity to price changes, and the sensitivity of prices to demand changes on price fluctuation. Results - The analytical results imply that even without external effects, the boom-bust cycle can occur endogenously due to buyer psychological factors. The model supports the expectation of future price direction as the most important variable causing price fluctuation in housing market. Consumer tendency for making choices based on both the current and expected future price causes repetitive boom-bust cycles in housing markets. Such consumers who respond more sensitively to price changes are shown to make the market more volatile. Consumer price elasticity is shown to be irrelevant to price fluctuations. Conclusions - The mechanism of price fluctuation in the proposed model can be summarized as follows. If a certain external shock causes an initial price increase, consumers perceive it as an ongoing increasing price trend. If the demand increases due to the higher expected price, the price goes up further. However, too high a price cannot be sustained for long, thus the increasing price trend ceases at some point. Once the market loses the momentum of a price increase, the price starts to drop. A price decrease signals a further decrease in a future price, thus the demand decreases further. When the price is perceived as low enough, the direction of the price change is reversed again. Policy makers should be cognizant that the current increase in housing prices due to increased liquidity can pose a serious threat of a sudden price decrease in housing markets.

Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction

  • Housiadas Kostas D.;Beris Antony N.
    • Korea-Australia Rheology Journal
    • /
    • 제17권3호
    • /
    • pp.131-140
    • /
    • 2005
  • In this work we show the results of our most recent Direct Numerical Simulations (DNS) of turbulent viscoelastic channel flow using spectral spatial approximations and a stabilizing artificial diffusion in the viscoelastic constitutive model. The Finite-Elasticity Non-Linear Elastic Dumbbell model with the Peterlin approximation (FENE-P) is used to represent the effect of polymer molecules in solution, The corresponding rheological parameters are chosen so that to get closer to the conditions corresponding to maximum drag reduction: A high extensibility parameter (60) and a moderate solvent viscosity ratio (0.8) are used with two different friction Weissenberg numbers (50 and 100). We then first find that the corresponding achieved drag reduction, in the range of friction Reynolds numbers used in this work (180-590), is insensitive to the Reynolds number (in accordance to previous work). The obtained drag reduction is at the level of $49\%\;and\;63\%$, for the friction Weissenberg numbers 50 and 100, respectively. The largest value is substantially higher than any of our previous simulations, performed at more moderate levels of viscoelasticity (i.e. higher viscosity ratio and smaller extensibility parameter values). Therefore, the maximum extensional viscosity exhibited by the modeled system and the friction Weissenberg number can still be considered as the dominant factors determining the levels of drag reduction. These can reach high values, even for of dilute polymer solution (the system modeled by the FENE-P model), provided the flow viscoelasticity is high, corresponding to a high polymer molecular weight (which translates to a high extensibility parameter) and a high friction Weissenberg number. Based on that and the changes observed in the turbulent structure and in the most prevalent statistics, as presented in this work, we can still rationalize for an increasing extensional resistance-based drag reduction mechanism as the most prevalent mechanism for drag reduction, the same one evidenced in our previous work: As the polymer elasticity increases, so does the resistance offered to extensional deformation. That, in turn, changes the structure of the most energy-containing turbulent eddies (they become wider, more well correlated, and weaker in intensity) so that they become less efficient in transferring momentum, thus leading to drag reduction. Such a continuum, rheology-based, mechanism has first been proposed in the early 70s independently by Metzner and Lamley and is to be contrasted against any molecularly based explanations.