• 제목/요약/키워드: Elastic-Viscoplastic Material

검색결과 15건 처리시간 0.024초

Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석 (Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model)

  • 류철성;백운봉;최환석
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2006
  • Bodner-Partom 점소성 모델을 이용하여 액체로켓 연소기 재생냉각 챔버의 구조해석을 수행하였다. 구조해석에 사용한 점소성 모델의 재료상수를 구하기 위하여 구리합금에 대하여 변형률 속도를 변화시켜 인장시험을 상온 및 고온에서 수행하였다. 점소성 모델은 상용유한요소 해석 프로그램인 Marc의 사용자 서브루틴을 이용하여 구현하였다. 구조해석 결과 냉각 채널은 압력에 의한 하중보다 열하중에 의하여 대부분의 변형이 발생하며 연소기의 작동조건에서 냉각 채널의 구조적인 안정성 여부를 확인할 수 있었다.

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • 제2권4호
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.

점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석 (Structural analysis of liquid rocket thrust chamber regenerative cooling channel using visco-plastic model)

  • 류철성;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.151-155
    • /
    • 2006
  • Bodner-Partom 점소성 모델을 이용하여 액체로켓 연소기 재생냉각 챔버의 구조해석을 수행하였다. 구조해석에 사용한 점소성 모델의 재료상수를 구하기 위하여 구리합금에 대하여 변형률 속도를 변화시켜 인장시험을 상온 및 고온에서 수행하였다. 점소성 모델의 재료상수는 구리합금의 변형률 속도 시험 데이터로부터 구하여 사용하였으며 점소성 모델의 구현은 상용유한요소 해석 프로그램인 Marc의 사용자 서브루틴을 이용하여 구현하였다. 구조해석 결과 냉각 채널은 압력에 의한 영향보다 열하중에 의하여 대부분의 변형이 발생하며 연소기의 작동조건에서 냉각 채널의 안정성 여부를 확인할 수 있었다.

  • PDF

Quasi-Static and Dynamic Loading Responses of Ti-6Al-4V Titanium Alloy: Experiments and Constitutive Modeling

  • Suh, Yeong-Sung;Akhtar S. Khan
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.191-194
    • /
    • 2003
  • The results from a systematic study of the response of a Ti-6Al-4V alloy under quasi-static and dynamic loading at different strain rates and temperatures are presented. It has been shown that the work-hardening rate decreased as the strain rate and the strain increased. The correlations and predictions using modified KHL (Khan-Huang-Liang) viscoplastic constitutive model are compared with those from JC (Johnson-Cook) model and experimental observations. Overall, KHL model correlations and predictions compared much more favorably than the corresponding JC model predictions and correlations.

  • PDF

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

An Investigation on Collapse Behavior of Shear Localization in Elasto- Thermo- Viscoplastic Materials

  • Kim, Hyun-Gyu;Im, Se-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2178-2188
    • /
    • 2006
  • The stress collapse in the formation of shear bands in elasto-thermo-viscoplatic materials is systematically studied within the framework of one-dimensional formulation via analytical and numerical methods. The elastic energy released in a domain is found to play an important role in the collapse behavior of shear localization. A non-dimensional parameter named the stability indicator is introduced to characterize the collapse behavior, with approximate forms of the incremental governing equations. The stability indicator offers useful information regarding the degree of severity of an abrupt change of deformations during the stress collapse. Numerical experiments are carried out to verify the stability indicator by varying material properties.

폴리우레탄 폼 비선형 압축 거동 해석용 온도 의존 손상 점소성 구성방정식 (Temperature-Dependent Viscoplastic-Damage Constitutive Model for Nonlinear Compressive Behavior of Polyurethane Foam)

  • 이정호;김슬기;이제명
    • 한국전산구조공학회논문집
    • /
    • 제29권5호
    • /
    • pp.437-445
    • /
    • 2016
  • 현재 많은 산업에서 구조물의 온도환경 유지를 위한 단열재로 폴리우레탄 폼이 사용되며, 수명 동안 정적 및 동적의 다양한 하중이 이에 부과된다. 폴리우레탄 폼은 고분자재료로써 다공성이며, 단열성능은 내부기공의 크기에 크게 의존한다. 또한, 폴리우레탄 폼의 기계적 거동은 변형률 속도 및 온도에 대한 의존성이 큰 동시에 압축에 대하여 큰 비선형 연성거동을 보인다. 이러한 비선형 연성 압축거동 중에 폴리우레탄 폼은 변형률의 증가에 따라 기공율과 탄성계수의 감소를 보인다. 따라서 본 연구에서는 상기 특성들을 포함한 폴리우레탄 폼의 변형률 속도 및 온도 의존 비선형 압축거동을 모사하기 위하여 온도 의존 손상 점소성 구성방정식이 개발되었다.

미세조직학적 변수를 고려한 합금의 구성모델링 (Constitutive Modelling of Alloys Implementing Microstructural Variables)

  • 김형섭;김성호;류우석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2002
  • A unified elastic-viscoplastic ocnstitutive model based on dislocation density considerations is described. A combination of a kinetic equation, which describes the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provide the constitutive equations of the Model. Microstructural features of the material, such as the grain size, spacing between second phase particles etc., are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in the simple version of the model. The model has a modular structure and can be adjusted to describe a particular type of metal forming processes.

  • PDF

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

안티푸라민-에스® 로션의 레올로지 특성 연구 (Rheological Properties of Antiphlamine-S® Lotion)

  • 국화윤;송기원
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권3호
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.