• Title/Summary/Keyword: Elastic-Plastic Theory

Search Result 142, Processing Time 0.03 seconds

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

The wheel wear prediction of a Korea High Speed Train using a FE-analysis (유한요소해석을 이용한 한국형 고속철도 차량의 차륜 마모 예측)

  • Choi Jeong Heum;Han Dong-Chul;Kim Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.409-414
    • /
    • 2005
  • It is difficult to apply the Hertz theory to the wheel-rail contact problem which has the complicated geometric form and plastic deformation. Therefore, we perform the elastic-plastic FE analysis and compare the results with those of Hertz theory. Kalker's simplified theory of rolling contact is used to discretize the contact patches and calculate local traction and slip. The wear volumes are calculated using Archard wear equation.

  • PDF

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Ultimate Load Analysis of Axisymmetric Shells of Revolution Subjected to External Pressure (외압(外壓)을 받는 축대칭(軸對稱) Shell의 한계하중(限界荷重)에 관한 연구(硏究))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 1983
  • This paper describes the application of the finite element method to the large deflection elastic plastic analysis and ultimate load calculation of axisymmetric shell of revolution with initial imperfection subjected to external pressure. The nonlinear equilibrium equations are linearized by the successive incremental method and are solved by the combination of load increment and iteration scheme with considering plastic deformation theory. To get the more realistic effect of large deflection, corrected coordinats and directions of applied load ar every load increment steps are used. The effects of the plasticity, initial imperfection and the shape of shells on the ultimate load of clamped circular cap under external pressure are investigated. Consequently, the following conclusions are obtained; (1) At same geometric parameter $\lambda$, each shape of clamped circular caps yield same elastic ultimate loads in both cases, i.e. with and without initial imperfections, whereas, in the case of elastic-plastic state the shell becomes thicker, the ultimate loads are getting smaller. (2) The effects of initial imperfection to ultimate load are most significant in the elastic case and are more senstive in the elastic-plastic state with the thinner shells.

  • PDF

Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory

  • Jin, Peijian;Wang, Enyuan;Song, Dazhao
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.627-637
    • /
    • 2017
  • The high positive correlation between plastic strain of loaded coal-rock and AE (acoustic emission) characteristic parameter was studied and proved through AE experiment during coal-rock uniaxial compression process. The results show that plastic strain in the whole process of uniaxial compression can be gained through the experiment. Moreover, coal-rock loaded process can be divided into four phases through analyzing the change of the plastic strain curve : pressure consolidation phase, apparent linear elastic phase, accelerated deformation phase, rupture and development phase, which corresponds to conventional elastic-plastic change law of loaded coal-rock. The theoretical curve of damage constitutive model is in high agreement with the experimental curve. So the damage evolution law of coal rock damage can be indicated by both acoustic emission and plastic strain. The results have great academic and realistic significance for further study of both AE signal characteristics during loaded coal-rock damaged process and the forecasting of coal-rock dynamic disasters.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis (직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.89-100
    • /
    • 2007
  • In the companion paper, we provided the novel elastic-plastic constitutive model based on the micromechanics theory. Herein, the elastic and elastic-plastic deformation of granular soils is meticulously analyzed. To guarantee high accuracy of the microscopic parameter, the systematic procedure to evaluate the parameters is provided. The analysis of the elastic response during the isotropic and triaxial compression shows that the stress-level dependency of cross-anisotropic elastic moduli is induced by the power relationship of the contact force in the normal contact stiffness, while the evolution of fabric anisotropy is more pronounced during triaxial compression. The micromechanical analysis indicates that the plastic strains are likely to occur at very small strains. The plastic deformation of tangential contacts has an important role in the reduction of soil stiffness during axial loading.

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

A New Interpretation on the Additive and Multiplicative Decompositions of Elastic-Plasmic Deformation Gradient Tensor (탄소성 변형구배텐서의 가산분해와 곱분해에 대한 새로운 역학적 이해)

  • Y.Y. Nam;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.94-102
    • /
    • 1996
  • An interpretation for the additive and multiplicative decomposition theory of the deformation gradient tensor in finite deformation problems is presented. the conventional methods have not provided the additive deformation velocity gradient. Moreover the plastic deformation velocity gradients are not free from elastic deformations. In this paper, a modified multiplicative decomposition is introduced with the assumption of coaxial plastic deformation velocity gradient. This strategy well gives the additive deformation velocity gradient in which the plastic deformation velocity gradient is not affect4d by the elastic deformation.

  • PDF

A study on strain specification and safety degree of connection joints of steel structural member (강구조부재 연결부의 변형특성 및 안전도에 관한 연구)

  • 김경진;김두환
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.5-10
    • /
    • 1986
  • On SWS 41 Plates jointed by the F11T M 20 high strength bolts the study on stress behavior and safety degree until rupture in static tensile tests were performed. By these results, in case of no clamping force stress concentration was extremed for strain of about 10% higher ratio. Elastic strain occurred to change of test specimens depth by the load and plastic strain occurred to local minute sleep after elastic strain. compared shear stress with tension stress from the fracture load it was showned lower values than the maximum shear stress theory and stress strain energy theory.

  • PDF

Behavior of Buried Pipe under Embankment (성토하에 매설된 관의 거동)

  • 강병희;윤유원
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1988
  • The stresses on the buried steel pipe under embankment are analysed by the elasto-plastic theory using FEM to study the influences of the geometry of soil-conduit pipe system and the elastic modulus of the fill on the pipe responses . The geometry of the system considered in this study includes the height of embankment, the thickness of the pipe, and the width and the depth of the trench . By comparing the stresses computed by Marston-Spangler's pipe theory with those obtained from the elasto-plastic theory, Marston-Spangler's theory was discussed and analysed . It is found that the stress distribution around the pipe by elasto- plastic analysis is similar to that by Spangler's flexible pipe theory when the geometrical ratio (diameter/thickness) of the steel pipe is 400. And Spangler's flexible pipe theory does not seem to be suitable to analyse the buried steel pipe of which the geometrical ratio is lower than 200. The vertical loads by the rigid pipe theory are always larger than those by the flexible pipe theory regardness of the variations in the geometry of soil-conduit pipe system considered above and the elastic modulus of the fill.

  • PDF