• 제목/요약/키워드: Elastic-Plastic Fracture

검색결과 274건 처리시간 0.03초

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.

보강된 노후 구조물 파괴거동 예측을 위한 수치해석기법 개발 (Numerical Analysis of Fracture Behavior in Aged RC Structures)

  • 신승교;고태호;김문겸;임윤묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1031-1036
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the strengthening effect of repaired aged RC structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are modeled as quasi-brittle materials. An elastic-perfectly plastic constitutive relationship is introduced for reinforcing bars. Also, a linear-elastic relationship for repair materials such as FRP or CFS. Structural deterioration in terms of corrosion of steel rebar is considered. The interfacial property between steel and concrete which is reduced by corrosion of steel rebar is obtained by comparing numerical results with experimental results of pull out tests. Obtained values are used in repaired reinforced concrete structures under flexural loading conditions. To investigate strengthening effect of the structures repaired with carbon fiber sheet(CFS), repaired and unrepaired RC structures are analyzed numerically. From analysis, rip-off, debonding and rupture failure mechanisms of interface between substrate and CFS can be determined. Finally, strengthening effect according to the variation of interfacial material properties is investigated, and it is shown that interfacial material properties have influence on the mechanical behavior of repaired structure systems Therefore, the developed numerical method using axial deformation link elements can use for determining the strengthening effects and failure mechanism of repaired aged RC structure.

복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법 (Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • 펄프종이기술
    • /
    • 제31권5호
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

API 5LB강관의 고주파전기저항용접부에 관한 파괴인성 평가 (Evaluation of Fracture Toughness on High Frequency Electric Resistance Welded API 5LB Steel Pipe)

  • 오세욱;윤한기;안계원
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.127-137
    • /
    • 1987
  • The evaluation of the elastic-plastic fracture toughness $J_{1C}$ was performed on the center of weld metal(CWM), the heat affected zone (HAZ) and the base metal (BM) of API 5LB steel pipes welded by the high frequency electric resistance welding. The $J_{1C}$ was evaluated by the JSME R-Curve and JSME SZW methods using the smooth and side-grooved specimens. The results are as follows; (1) The $J_{1C}$ values by the SZW method are overestimated as compared with those by the R-curve method, because the micro-crack is formed as SZW increase with the deformation at SZ after initiation of the ductile crack. (2) The everage of $J_{1C}$ values by the the R-curve and the SZW methods in side-grooved specimens tended to decrease in comparison with smooth specimens 9.42% at CWM, 4.2% at HAZ, 23.2% at BM, respectively. (3) The boundary of the fatigue pre-crack, stretched zone, and dimple regions appeared more clearly in side-grooved specimens, for the slight change of SZW in the direction of the plate thickness, as compared with smooth specimens.

  • PDF

정확한 비선형 파괴역학 해석을 위한 새로운 Ramberg-Osgood 상수 결정법 (On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis)

  • 김윤재;허남수;김영진;최영환;양준석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.170-177
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood (R-O) fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

  • PDF

5182 Al합금판의 전기저항 점용접부 피로거동에 관한 연구 (A Study on the Fatigue Behavior of Resistance Spot Welded Part of 5182 Aluminum Aloy Sheet)

  • 신현일;박용석;강성수
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.84-92
    • /
    • 1998
  • On this study, the variations of hardness and microstructure were observed at he spot-welded part of 5182 alminum alloy sheets with thickness of 1.2 mm. The hardness of spot-welded part of aluminum alloy indicated the lowest value at nugget center. Also, the position where fatigue crack exists was investigated by surveying microstructure of the spot-welded sections. Mean load-deformation diagrams were obtained from static tensile test. Fracture was occurred completely within 5 mm after transforming elastic into plastic area. Fatigue test was stopped when the specimens of fatigue test had the final displacement of 0.2mm and measured fatigue bending angle and crack length. This study utilized them, investigated the relations between fatigue bending angle and fatigue crack length and made a estimation of the fatigue fracture life of resistance spot welded part of 5182 aluminum alloy sheet. The relative equation o fatigue crack length and fatigue failure life can be represented by {TEX}$L_{C}${/TEX}=α{TEX}$N_{f}^ {β}${/TEX}.

  • PDF

정확한 비선형 파괴역학 해석을 위한 Ramberg-Osgood 상수 결정법 (On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis)

  • 허남수;김윤재;최영환;양준석;김영진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1571-1578
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood(R-O)fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

원자력압력용기강 (SA508-3)의 평활 및 측면홈 CT시험편을 이용한 J$_{IC}$ 평가 (JIC Evaluation of the Smooth and the Side-Grooved CT Specimens in the Reactor Pressure Vessel Steel(SA508-3))

  • ;오세욱;임만배
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.173-184
    • /
    • 1994
  • 원자력 압력용기강의 탄소성 파괴인성값 $J_IC$를 CT형 시험편을 이용하여 검토하였으며, 평활 시험편 및 측면홈 시험편의 두께는 각각 $B_O$=25.4mm, $B_N$=20.4mm 이다. 측면홈의 깊이는 19.7% 이며, 홈의 각도는 90 .deg.로 가공하였다. 탄소성 파괴인성시험은 ASTM E813-81과 JSME S001-81의 추천방법에 따라 실시하였다. 두 추천방법으로 실험한 결과 ASTM 방법에 의한 $J_IC$값이 과대평가됨으로써 부대조건에 만족되지 못하였지만 JSME방법은 만족되었다. 측면홈 시험편은 R고선법에 의한 ductile tearing의 결정이 평활 시험편보다 용이하였으며, 이에 따른 $J_IC$값의 정확성을 배가 할 수 있었다. 또한 임계 스트레치존 폭($SZW_C$)은 측면홈에 의한 높은 3축응력이 발생되어 평활시험편보다 적게 나타났으며, 이러한 복합적인 원인에 기인하여 스트레치존법에 의한 $J_IC$평가는 R곡선법에 의한 평가보다 약간 과대평가됨을 알 수 있었다.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • 소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF