• Title/Summary/Keyword: Elastic recovery

Search Result 185, Processing Time 0.028 seconds

Development of Stretch Forming Apparatus using Flexible Die (가변금형을 이용한 스트레치 성형장치 개발)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • A stretch forming method has been widely used in sheet metal forming process. Especially, this process has been adopted in aircraft and high-speed train industries for skin structure forming having a variety of curvature. Until now, solid dies, which are designed with respect to the specific shapes and manufactured as a single piece, have been usually applied to stretch forming process. Therefore, a great number of solid dies has to be developed according to the shapes of the curved skin structure. Accordingly, a flexible die is proposed in this study. It replaces the conventional solid dies with a set of height adjustable punch array. A usefulness of the flexible die is verified through a formability comparison with the solid die using finite element method considering an elastic recovery and the stretch forming apparatus with the flexible die is developed.

An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method (레이저 프린터용 샤프트 밀폐단조 성형해석)

  • Cho, S.H.;Shin, M.S.;Kim, J.H.;Ra, S.W.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

A STUDY ON DISTORTION OF BEVEL GEARS AND DIE INDUCED BY FORGING AND HEAT TREATMENT

  • Cho J.R.;Kang W.J.;Kim M.G.;Lee J.H.;Lee Y.S.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.73-79
    • /
    • 2003
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to cold forging and heat treatment of bevel gears is investigated. Distortions of forged gears, machined gears and die are measured and compared. Numerical analysis is used to simulate the complete cold forging process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF

The Deformation of Knitted Cotton Fabrics with/without Spandex During Laundering (스판덱스 혼합 면 편성물과 면 편성물의 세탁에 따른 변형 비교)

  • Chung, Haewon;Kim, Ku-Ja;Kim, Mikyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.2 s.150
    • /
    • pp.296-305
    • /
    • 2006
  • This study evaluate the effect of laundering on the deformation of knitted spandex/cotton fabrics compared with that of knitted cotton fabrics. Commercial knitted spandex/cotton and knitted cotton fabrics for T-shits were laundered in a drum-type washing machine and dried in a tumble dryer. Wale spirality, shrinkage, elastic recovery and surface contour of knitted fabrics were investigated under different laundering conditions: washing temperature, presoaking time and washing cycles. Knitted spandex/cotton fabrics had a lower angle of spirality than knitted cotton fabrics. After the first washing cycle, the angles of spirality of all the fabrics had decreased greatly. Knitted cotton fabric of low density deformed more than that of higher density. Knitted spandex/cotton. fabric of low density shrank less, because of the greater extension given during heat-set. Permanent elongation length at the 80$\%$ extension was longer than at the 50$\%$ extension, and the knitted spandex/cotton fabric which was expanded greatly during heat-set had a lower elastic recovery rate. The surface appearance of the knitted spandex/cotton fabrics was worsl~ than that of the knitted cotton fabrics before laundering and after repeated laundering, because of the much protruded cotton fibers from the yarns.

Manufacture of Architectural Skin-structure with a Double Curved Surface Using Flexible Stretch Forming (가변 스트레치 성형공정을 활용한 건축외피 구조물의 비정형 곡면 제작)

  • Park, J.W.;Kim, Y.B.;Kim, J.;Kim, K.H.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.196-203
    • /
    • 2013
  • Flexible stretch forming is an appropriate process for manufacturing of components for aerospace, shipbuilding and architecture structures. Flexible stretch forming has several advantages including that it could be applied to form various shapes such as ones with double curved surfaces. In this study, a systematic numerical simulation was conducted for forming double curved surfaces using flexible stretch forming. The desired surface had a saddle type configuration. It had two radii one of 2500mm and the other of 2000mm along its length and width. In the simulation, the decrease of elastic recovery due to the stretching was confirmed. Experiments were also conducted to confirm the viability of the process. By comparing the simulation to the experiment results, the suitability of flexible stretch forming for double curved surfaces was verified. From the results, the maximum error from desired surface was confirmed at about 1.3mm at the edge of the surface. Hence, it is confirmed that flexible stretch forming has the capability and feasibility to manufacture curved surfaces for architectural skin-structures of buildings.

Enhanced Wear Resistance of Cutting Tools Using Multilayer ta-C Coating (다층막 ta-C 코팅 적용을 통한 절삭공구의 내마모성 향상)

  • Kim, Do Hyun;Kang, Yong-Jin;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.360-368
    • /
    • 2020
  • Wear resistance of cutting tools is one of the most important requirements in terms of the durability of cutting tool itself as well as the machining accuracy of the workpiece. Generally, tungsten carbide ball end mills have been processed with hard coatings for high durability and wear resistance such as diamond coating and tetrahedral amorphous carbon(ta-C) coating. In this study, we developed multilayer ta-C coatings whose wear resistance is comparable to that of diamond coating. First, we prepared single layer ta-C coatings according to the substrate bias voltage and Ar gas flow, and the surface microstructure, raman characteristics, hardness and wear characteristics were evaluated. Then, considering the hardness and wear resistance of the single layer ta-C, we fabricated multilayer coatings consisting of hard and soft layers. As a result, it was confirmed that the wear resistance of the multilayer ta-C coating with hardness of 51 GPa, and elastic recovery rate of 85% improved to 97% compared to that of the diamond coated ball end mill.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

Analysis of Springback of Sheet Metal(I): Analytical Model Based on the Residual Differential Strain (박판재의 스프링백 해석(I)-잔류 변형율에 근거한 해석모델)

  • Lee, Jae-Ho;Kim, Dong-Woo;Sohn, Sung-Man;Lee, Mun-Yong;Moon, Young-Hoon
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.509-515
    • /
    • 2007
  • As the springback of sheet metal during unloading may cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. When considering the case of a sheet metal being bent to radius $\rho$ that is such that the maximum stress induced exceed the elastic limit of the material, plastic strain in the outer surface will occur and the material will take a permanent set: but since, on removing the bending moment, the recovery of the material is not uniform across the thickness, springback will occur and the radius $\rho$ will not be maintained. Furthermore, when a tensile load being applied to each end of specimen, the tensile stress due to bending is increased and the compressive stress is decreased or cancelled and eventually the whole specimen may be in varying degree of tension. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ will be determined by the residual differential strain. Therefore in this study the springback is analytically estimated by the residual differential strains between upper and lower surfaces of greatest radius after elastic recovery, and a springback model based on the bending moment is also analytically derived for comparison purpose.

The Efficacy of Oral Low Molecular Weight Collagen Peptide for Skin Recovery after Fractional Photothermolysis Laser Treatment (Fractional Photothermolysis 치료 후 피부회복 촉진에 미치는 경구용 저분자 콜라겐 펩타이드의 효과)

  • Kim, In Su;Choi, Sun Young;Kim, Byung Gyu;Kim, Jeong Kee;Kim, Eun Joo;Kim, Beom Joon;Kim, Myeung Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.321-326
    • /
    • 2012
  • Recent studies have revealed that collagen peptide plays a protective role on skin by improving the activity of antioxidants and acts as an inducer of skin regeneration. To evaluate the efficacy of low molecular weight collagen peptide for skin recovery after non-ablative 1550 nm fractional photothermolysis laser. 10 volunteers were randomly divided into two groups. Both control and experimental groups received fractional photothermolysis treatment. In the experimental group, 5 subjects received oral collagen peptide 1,000 mg/day for 8 weeks. Before and after the treatment, we measured elastic recovery of skin, transepidermal water loss (TEWL) and erythema index (EI) for each patients. The evaluation of clinical results showed that elastic recovery of skin is higher in the experimental group than the control group (p < 0.05). TEWL have no significancy between two groups and erythema rapidly disappeared in the experimental group. On the quartile grading scale, the mean patient satisfaction 4 weeks after the fractional photothermolysis treatment was 2.0 in experimental group and 1.2 in control group. The low molecular weight collagen peptide appears to be an effective conservative therapy for skin recovery after non-ablative 1550 nm fractional photothermolysis treatment.