• Title/Summary/Keyword: Elastic plate

Search Result 1,001, Processing Time 0.031 seconds

A Study of floor impact noise reduction in a steel structure by using the floating floor (Floating floor를 이용한 강구조물의 바닥충격음 저감에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, floor impact noise reduction in a steel structure is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN(Structure-borne Noise) and floor damping are measured to study the effect of floating floor. structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

  • PDF

Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block (박판 블록의 용접 좌굴 변형 해석에 관한 연구)

  • Jang, Gyeong-Bok;Park, Jung-Gu;Yang, Jin-Hyeok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

Model Test and Deformation Analysis of the Improved Soft Foundation(I) (개량연약지반의 모형실험과 변형해석(I))

  • 이문수;이진수;오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.67-78
    • /
    • 1994
  • This is a fundamental study aiming at scrutinizing the effect of reinforcement and deformation characteristics of soft clayey foundation improved by vanous technical treatments. Among many methods proposed thus far, geotextile was selected for the purpose of improvement of the model soil foundation on which plate loading test was subsequently performed. Loading test has been carried out with the variation of the location and number of covering layers of geotextile, and actual values for ground deformation and geotextile effect were secured. As for technique on deformation analysis, elasto-plastic model for soil, elastic model for sand, and beam theory for geotextile were coupled with satisfactory results between observed and numerical values.

  • PDF

Study on Earthquake Response characteristics of Building frames with energy absobers installed in Beams (보 제진 라멘의 변형특성에 관한 연구)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.191-198
    • /
    • 1997
  • The subject of this thesis is the vibration response of framed structure for buildings of "damed beam" type. In steel rigid frame with damped beams, web plate in mid span of beams is perforated to form a rectangular opening, only upper and lower flanges being remained. When the frame is subjected to horizontal seismic forces, dominant shearing deformation takes place in the opening part of the beams. Energy absorber in stalled in the opening is driven by relative displacement caused by the shearing deformation and provide the frame with damping force. First, static deformation of portal frames having a beam with the web opening is discussed and formulas of elastic deformation is derived.s derived.

  • PDF

Compression strength of pultruded equal leg angle sections

  • Polyzois, D.;Raftoyiannis, I.G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.541-555
    • /
    • 2000
  • Pultruded cross-sections are always thin-walled due to constraints in the manufacturing process. Thus, the buckling strength determines the overall strength of the member. The elastic buckling of pultruded angle sections subjected to direct compression is studied. The lateral-torsional buckling, very likely to appear in thin-walled cross-sections, is investigated. Plate theory is used to allow for cross-sectional distortion. Shear effects and bending-twisting coupling are accounted for in the analysis because of their significant role. A simplified approach for determining the maximum load of equal leg angle sections under compression is presented. The analytical results obtained in this study are compared to the manufacturer's design guidelines for compression members as well as with the design specifications for steel structural members. Experimental results are obtained for various length specimens of pultruded angle sections. The results presented in this paper correspond to actual pultruded equal leg angle sections being used in civil engineering structures.

Inelastic behavior of standard and retrofitted rectangular hollow sectioned struts -II: Experimental study

  • Boutros, Medhat;McCulloch, James;Scott, Damian
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.505-516
    • /
    • 2000
  • This paper is a presentation of an experimental study about the elastic-partly plastic behavior of rectangular hollow steel pinned struts subjected to static cyclic axial loading and the evaluation of the compressive strength of retrofitted crooked struts. Retrofitting is achieved by welding stiffening plates along the webs of damaged struts. The material follows a quasi-kinematic hardening hysteresis path as observed from coupon tests. Test results are compared to those of an analytical model showing a good agreement for both standard and retrofitted struts. The comparison of different stiffener plate dimensions shows that more efficient strengthening is achieved by using long thin stiffeners rather than short thick ones.

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Bending Moment Analysis simpiified in Slab Bridges supported by Column Type Piers (기둥 지지된 슬래브교의 모멘트 간략산정법에 관한 연구)

  • Lee, Chae-Gyu;Kim, Young-Ihn;Kim, Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.73-78
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than gravity type pier is used. To determine the longitudinal bonging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width, and thickness of the slab and column section size. Then the analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment by simple beam analysis.

  • PDF

Analysis of Elasto-Plastic Buckling Characteristics of Plates (평면판의 탄소성 좌굴 특성 해석)

  • 김문겸;김소운;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.16-21
    • /
    • 1990
  • Recently, the finite element method has been sucessfully extended to treat the rather couplet phenomena such as nonlinear buckling problems which are of considerable practical interest. In this study, a finite element program to evaluate the elasto-plastic buckling stress is developed. The Stowell's deformation theory for the plastic buckling of flat plates, which is in good agreement with experimental results, is used to evaluate bending stiffness matrix. A bifurcation analysis is performed to compute the elasto-plastic buckling stress. The subspace iteration method is employed to find the eigenvalues. The results are compared with corresponding enact solutions to the governing equations presented by Stowell and also with experimental data due to Pride. The developed program Is applied to obtain elastic and elasto-plastic buckling stresses for various loafing cases. The effect of different plate aspect ratio is also investigated.

  • PDF

A Study on the Dynamic Behavior of Steel Composite railway Bridges subject to High Speed Train (고속열차하중 하의 강합성형 철도교의 동적거동에 관한 연구)

  • 장승필;곽종원;하상길;김성일
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.548-555
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two Ⅰ-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs ate fully connected with steel girders, the offset between slabs and girders is modeled using rigid link. The track system is modeled using beams on elastic foundation theory. And, the TGV train is modeled in 2-dimension considering bouncing and pitching motion. And, braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies are performed.

  • PDF