• 제목/요약/키워드: Elastic hinge

검색결과 93건 처리시간 0.016초

용접된 보강판의 압축 최종 강도의 간이 해석법 (A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates)

  • 장창두;서승일
    • 대한조선학회논문집
    • /
    • 제30권2호
    • /
    • pp.141-154
    • /
    • 1993
  • 본 논문에서는 주변 단순 지지된, 용접된 편면 보강판의 압축 최종 강도를 구하는 간략한 방법을 제안하고자 한다. 우선, 용접에 의한 변형 및 잔류응력과 같은 초기결함을 간략한 방법으로 추정하고, 이 초기결함이 존재하는 보강판의 붕괴 양식을 가정하여, 각 양식에 대해 최종 강도를 구하고, 여러 붕괴 하중에 때해 최소치를 택함으로 보강판의 붕괴 하중을 얻는다. 보강판이 최종 강도 상태에 달하기까지 붕괴 과정을 다음과 같이 가정한다. (1) 보강판의 전체 좌굴$\rightarrow$보강재의 굽힘에 의한 전체 붕괴 (2) 판재의 국부 좌굴$\rightarrow$판재의 국부 붕괴$\rightarrow$보강재의 전단면 항복에 의한 전체 붕괴 (3) 판재의 국부 좌굴$\rightarrow$보강재의 굽힘에 의한 전체 붕괴 (4) 판재의 국부 좌굴$\rightarrow$판재의 국부 붕괴$\rightarrow$보강재의 비틂 변형(tripping)에 의한 전체 붕괴 붕괴 하중 계산을 위해 Rayleigh-Ritz 법에 기초한 탄소성 대변형 해석을 수행하고, 소성 붕괴선을 가정한 소성 해석을 수행하여 탄성 해석선과 소성 해석선의 교점을 최종 강도로 택한다. 본 방법을 비선형 유한요소법과 비교해 보면 극히 짧은 계산 시간에 양호한 결과를 산출한다는 것을 알 수 있다. 본 방법에 의한 해석 결과를 통해 판재의 국부 거동에 미치는 보강재의 비틂 강성의 효과를 고찰하였고, 보강재의 굽힘에 의한 전체붕괴와 비틂 변형(tripping)에 의한 전체 붕괴의 기준이 되는 보강재의 형상을 제시할 수 있었다.

  • PDF

고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가 (Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel)

  • 주현성;문지호;최병호;이학은
    • 대한토목학회논문집
    • /
    • 제30권6A호
    • /
    • pp.513-523
    • /
    • 2010
  • I-거더 형식의 연속교 교각 부근에서는 큰 부모멘트가 작용하게 되며 이로 인하여 소성힌지가 생성된다. 소성힌지가 형성됨에 따라 교각 부근의 부모멘트는 감소하게 되며, 정모멘트부의 휨모멘트는 반대로 증가하게 된다. 이러한 모멘트 재분배가 원활히 발생하기 위해서는 소성힌지가 충분한 휨연성 혹은 단면회전 능력을 가지고 있어야 한다. 하지만 고강도 강재에 있어 재료연성이 다소 떨어지는 경향이 있고, 재료의 항복응력이 증가할수록 I-거더의 탄성 변형량은 이에 비례하여 증가하므로, 소성변형 능력 및 휨연성이 감소하는 것으로 알려져 있다. 따라서, 고강도 강재를 I-거더 형식의 연속교에 적용할 때 동일한 수준의 휨연성을 확보할 수 있는 방안에 대한 연구가 필요하다. 본 연구에서는 유한요소해석 및 실험 연구를 통하여 항복강도 680 Mpa급 강재 적용 I-거더의 휨연성 평가 및 휨연성 확보 방안에 대하여 연구를 수행하였다. 연구 결과 재료의 인장 강도가 증가함에 따라 탄성 변형이 증가하며 소성 변형 능력이 저하됨으로 I-거더의 휨연성이 현저하게 감소하는 것으로 나타났으며, I-거더의 휨연성 확보를 위하여 부등간격으로 가로보를 배치하는 방안을 제안하였다. 최종적으로 가로보부등배치가 I-거더의 휨연성에 미치는 영향을 실험적으로 검증하였다.

소프트 로봇용 4D 프린팅 소재 (4D Printing Materials for Soft Robots)

  • 이선희
    • 한국의류산업학회지
    • /
    • 제24권6호
    • /
    • pp.667-685
    • /
    • 2022
  • 본 원고는 소프트 로봇용 4D 프린팅 소재와 어그제틱 구조체에 대한 연구 동향을 정리한 것이다. 먼저 4D 프린팅 소재의 형상 변화 거동을 형상 변화와 형상기억 소재, 이중, 삼중, 다중 형상기억 효과, 접힘과 굽힘, 표면지형별로 구분하여 알아보았다. 형상 변화와 형상기억 소재 등 열이나 수분의 자극에 가역적/비가역적 혹은 규칙적/불규칙적 형상 변형이 가능할 수 있다. 다음으로, 차원별 형상이동 유형에 따른 특성과 물성에 대해 알아본 바, 1차원에서 다차원으로의 형상이동을 1D-1D 팽창/수축, 1D-2D 접힘/굽힘, 1D-3D 접힘 (1D-to-3D folding)으로 구분할 수 있다. 2차원에서 형상이동은 2D-2D 굽힙, 2D3D 굽힘/접힘/꼬임/표면말림/표면지형변화/굽힘과 꼬임, 3차원에서 다차원으로의 형상이동은 3D-3D 굽힙과 3D-3D 선형/비선형 거동으로 구분할 수 있다. 마지막으로 4D 프린팅 메타구조체 중 힌지 구조체를 적용한 KinetiX는 단일단위 터셀레이션과 다중단위 터셀레이션으로 모델링할 수 있고, 평면 및 공간 변환이 용이하고, 컨포머블 헬멧에 적용할 수 있다. 키리가미 구조체를 기본으로 한 공압형 어그제틱 구조체는 역설계 기반 구조체로써 굽힘각도를 제어하는 알고리즘으로 설계할 수 있다. 설계 후 3D 프린팅하여 TPU 멤브레인으로 프로토 타입을 제조하였고, 압력을 낮추면서 원하는 3차원 형상으로 완성될 수 있음을 확인하였다. 온도나 습도 등의 외부자극요소에 따라 형상이나 물성을 변화할 수 있는 재료를 사용하여 변형가능한 3차원 구조체로 성형한 4D 프린팅 소재를 이용하여 상지, 하지, 손, 발 등 소프트 로봇의 외골격(exoskeleton) 소재에 적용할 수 있을 것이다. 즉 자세제어, 상황인식, 동작신호 생성 등 다양한 환경에 대응하여 착용자의 움직임에 고하중, 고기동성, 운동지속성을 지원하는 기능을 갖는 소프트 로봇용 4D 프린팅 소재는 헬스케어 웨어러블 의류 제품화 개발로의 용도 전개가 가능할 것이다. 특히 4D 프린팅 소프트 소재 및 공정개발 분야는 일상 생할 보조용이나 재활치료용 의류를 개발하기 위한 3D 프린팅 소재 및 공정의 원천 기술에 해당하므로 이와 관련한 연구의 기초 자료로서 활용되기를 기대한다.