• Title/Summary/Keyword: Elastic Property

Search Result 494, Processing Time 0.026 seconds

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

A mono-material tactile sensor with multi-sensing properties

  • Shida, Katsunori;Yuji, Junnichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.587-592
    • /
    • 1994
  • To realize artificial device with sensing ability of the human skin, a mono-material tactile sensor with three sensing functions made of some elastic thin electro-conductive rubber sheet with eight latticed patch elements is proposed. This trial sensor provides the information of three kinds of model material characteristics such as thermal property, hardness property and the surface situation of materials by setting up three kinds of surface models as test materials. It can be finally expected to estimate unknown model materials by analyzing the data of the sensor.

  • PDF

Presumption of Optimum Concrete Elastic Modulus according to Content of Crushed Stone Powder (폐석분 함유율에 따른 최적의 콘크리트 탄성계수 추정)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.101-107
    • /
    • 2006
  • While a Study with regard to the measurement on Concrete Strength and the Change of Drying Shrinkage in accordace with Content Ratio of Crushed Stone Powder, it is being analyzed as the result that the strength according to Content Ratio of crushed Stone Powder is somewhat lowering. Accordingly, it is the real situation that the Concrete mixed with Crushed Stone Powder is utilized for non-structural material, not for the structural material. Therefore, this Research willing to furnish the suitable utilizing scheme for construction site as well as practical life by means of conduct the experiment on both Concrete Pressure Strength according to mixture with Crushed Stone Powder and Elastic Modulus, it also presumes the optimum Elastic Modulus Equation after analysis of comparison with common concrete strength. As the result of the experiment, in case of the Content Ratio of Crushed Stone Powder is less than 5%, it did not display a big difference in its both strength and matter-property compare with common concrete. In case of Elastic Modulus, when the Pressure Strength is 50% and 40% respectively, the Elastic Modulus Equation accords very well with the provided condition of Quadratic function, and as the result of the Presumption on Elastic Modulus according to Content of Crushed Stone Powder, in case the Pressure Strength is 50%, Elastic Modulus Equation showed that Error Ratio of Cubic function is at degree of 0.0005%, in case the Pressure Strength is 40%, Elastic Modulus Equation was accorded well with the value of the experimental data likely as the Error Ratio of Cubic function is at the degree around 0.0034%, respectively.

A Study on the Elastic Property Change with Temperature in Si Materials for MEMS (MEMS용 Si 소재의 온도에 따른 탄성 특성 변화에 관한 연구)

  • Jung, Sung-Hoon;Lee, Se-Ho;Lee, Sung-Hun;Kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.59-61
    • /
    • 2001
  • Electrostatically actuated test devices were designed to evaluate the elastic modulus of single crystalline Si (100) materials for MEMS device. Elastic modolus was calculated from resonant frequency by applying Rayleigh's energy method. Temperature effect on elastic properties was evaluated by detecting the resonant frequency change with increasing temperature to $600^{\circ}C$. The elastic modulus was decreased with heating and then increased with cooling, but specimen with thermal cycle showed a permanent change which is lower than the initial value. This phenomenon was explained by the change of interatomic force and the formation of $SiO_2$ layer on Si. The thickness of oxide layer was estimated by considering the change of mass and stiffness, and the formation of oxide layer was observed by the SEM photograph.

  • PDF

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

Correlation between the temperature and elastic properties of the light guide plate in edge-lit light-emitting-diode backlights

  • Kim, Jae-Hyun;Kim, Tae-Hyun;Lee, Byung-Woo;Seo, Jae-Seok;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • The correlation between the temporal and spatial variations of the elastic constant and temperature change was examined for a light guide plate (LGP) adopted in the edge-lit light-emitting-diode backlight for mobile applications, using the micro- Brillouin light scattering method. The velocity of sound and the elastic constant $C_{11}$ of an LGP made from bisphenol-A polycarbonate (PC) were investigated as functions of temperature, time, and position on the LGP. The temporal variation of $C_{11}$ exhibited an exponential decay, while the spatial variation of $C_{11}$ reflected the temperature distribution on the LGP. The glass transition temperature of the PC LGP was found to be located at $155^{\circ}C$. The result showed that systematic transformation between the elastic property and the temperature is possible and that the temperature distribution on the bulk LGP can be accurately probed via the present experiment method, without using any special temperature measurement equipment.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.

Equivalent Mechanical Property for Stress Analysis on Lined Pipe (Lined Pipe의 응력해석을 위한 등가 물성치 계산)

  • Choe, Jae-Seung;Jeong, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.445-451
    • /
    • 2002
  • The refractory-lined pipe is used to protect the system from high-temperature of the internal flow. The property of the refractory has an effect upon the stress analysis for fluid catalytic cracking(FCC) unit piping design. The equivalent elastic modulus and density considering steel and refractory must be applied in the stress analysis of the system. In the research, the theoretical method to obtain the value of the equivalent property is introduced and then the parametric analysis is carried out to understand the characteristic of the material properties, and the stress analysis is performed with reactor, the part of FCC unit.