• Title/Summary/Keyword: Elastic Motion

Search Result 709, Processing Time 0.02 seconds

A theoretical study on the hydroelastic behavior of Large floating offshore structures (대형부체구조물(大型浮體構造物)의 유체(流體)·탄성체(彈性體) 연성거동의 이론적 해석에 관한 연구(硏究))

  • Lee, Sang-Yeob;Rha, Young-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.433-439
    • /
    • 2001
  • A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an clastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of previous model test. Satisfactory agreement is found between theory and experiment.

  • PDF

A Numerical Method for Dynamic Analysis of Tracked Vehicles of High Mobility

  • Lee, Ki-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1028-1040
    • /
    • 2000
  • A numerical method is presented for the dynamic analysis of military tracked vehicles of high mobility. To compute the impulsive dynamic contact forces which occur when a vehicle passes on a ground obstacle, the track is modeled as the combination of elastic links interconected by pin joints. The mass of each track link, the elastic elongation of a track link between pin joints by the track tension, and the elastic spring effects on the upper and lower surfaces of each track link have been considered in the equations of motion. And the chassis, torsion bar arms, and road wheels of the vehicle are modeled as the rigid multi bodies connected with kinematic constraints. The contact positions and the contact forces between the road wheels and track, and the ground and the the track are simultaneously computed with the solution of the equations of motions of the vehicle consisting of the multibodies. The iterative scheme for the solution of the multi body dynamics of the tracked vehicle is presented and the numerical simulations are conducted.

  • PDF

The Effect of an Internal Damping on the Stability of Machine Tool Engineers Subjected to Dry Friction Force (내부감쇠가 건성마찰력을 받는 공작기계의 안정성에 미치는 효과)

  • 고준빈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper discussed on the effect of an internal damping on the stability of an elastic material subjected to dry friction force. Dry friction forces act tangentially at the contact surface between a moving belt and elastic material. The elastic material on a belt moving is modeled for simplicity into a cantilevered beam subjected to distributed follower force. In the analysis, the discretized equations derived according to finite element method are used. The impulse response of the beam are studied by the mode superposition method to observe the growth rate of the motion. It is found that the internal damping in cantilevered beam subjected to distributed follower force may act destabilizing.

The General Characteristic of Elastic-Plastic Spectra (탄소성 응답스펙트럼의 일반적인 성질에 대하여)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.233-240
    • /
    • 1997
  • Seven kinds of hysteric model were used and classified three groups considering the absorbing capacities of strain energy for each model. Four kids of each model. Four kinds of strong motion earthquake record (two of them were recorded in Japan and the others in U.S.A) are used. The yield strength of building was set in the ratio to the maximum input acceleration (Yield Strength / Maximum Acceleration = 0.5~3.0). Natural periods of structures were varied 0.1~3.0 second with an interval of 0.1 second. First group : Elastic-Plastic model, Ramberg-Osgood model Second group : Degrading Tri-liner model, Takeda model Third group : Slip model, Origin model, Max-D model Elastic-plastic response spectra were calculated for response velocities, displacement, energy input, ductility factors, accumulated ductility factors. The equivalent response values of M.D.O.F systems against S.D.O.F system were calculated to compare the relationship of two systems.

  • PDF

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

Influence of Elastic Constraints at Free End on Stability of Timoshenko Cantilever Beam Subjected to a Follower Force (종동력을 받는 Timoshenko 외팔보에서 자유단의 탄성구속이 안정성에 미치는 영향)

  • 윤한익;손종동;김현수
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.116-121
    • /
    • 1996
  • On the stability of Timoshenko cantilever beam subjected to a follower force, the influence of the characteristics of elastic constraints at the free end Is studied. The equations of motion and boundary conditions of this nonconservative elastic system are estabilished by using the Hamilton's principle. Upon evaluation of the stability of this system, the effect of shear deformation and rotatory inertia is considered in calculation. Using cowper's formulae Timoshenko's shear coefficient K'are determined. From this imvestigation it is found that the constrain parameter have an appreciable stabilizing effect in this nonconservative system. Moreover, it is obvious that the small values of K'decrease the flutter load of this system.

  • PDF

Sound Propagation in Circular Duct Lined with Elastic Porous Noise Control Materials (소음제어용 탄성다공물질이 대어진 원형덕트 내의 음파전달)

  • 정인화;강연준
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.302-309
    • /
    • 1999
  • In this paper, a circular lined-duct is modeled by using an axisymmetric foam finite element, which is based on elastic porous material theory of Biot. For various thicknesses of three kinds of lining materials, finite element predictions are compared with measurement results and Morse's analytical results. While the analytical model has larger error as the lining becomes thicker, results of the present model have a good agreement with experimental results for all the thicknesses considered here. It has also been found that constraining the axial motion on the circumferential surface of the lining enhances sound attenuation at low freqneucies.

  • PDF

The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates

  • Fattahi, A.M.;Safaei, Babak;Moaddab, Elham
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.281-292
    • /
    • 2019
  • Nonlocal elasticity and Reddy plant theory are used to study the vibration response of functionally graded (FG) nanoplates resting on two parameters elastic medium called Pasternak foundation. Nonlocal higher order theory accounts for the effects of both scale and the effect of transverse shear deformation, which becomes significant where stocky and short nanoplates are concerned. It is assumed that the properties of FG nanoplate follow a power law through the thickness. In addition, Poisson's ratio is assumed to be constant in this model. Both Winkler-type and Pasternak-type foundation models are employed to simulate the interaction of nanoplate with surrounding elastic medium. Using Hamilton's principle, size-dependent governing differential equations of motion and corresponding boundary conditions are derived. A differential quadrature approach is being utilized to discretize the model and obtain numerical solutions for various boundary conditions. The model is validated by comparing the results with other published results.

A Plan to Develop Seismic Capacity Verification Procedures Based on the Elastic-Plastic Strain Features (탄소성 변형률 기반 내진성능 평가 절차서 개발 방안)

  • Hwang, Jong Keun;Jeong, Ill Seok;Kim, Beom Shig;Ahn, Sang Won;Bang, Hye Jin;Lee, Min Hee;Jeong, Hyeon Seob
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • A development plan for seismic capacity verification procedures of nuclear components based on the elastic-plastic strain (EPS) features is explained in this paper. The EPS methodology is more realistic to assess seismic responses of components to extreme seismic events beyond the safe shutdown earthquake (SSE) than current practices with the criteria of stress limits. The EPS based approach to analyze the seismic capacity of components can reduce over-conservatism in the current stress-based criteria and can incorporate the seismic responses of components deformed in plastic behavior by the motion of extreme earthquake.

Longitudinal vibration of a nanorod embedded in viscoelastic medium considering nonlocal strain gradient theory

  • Balci, Mehmet N.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This article investigates the longitudinal vibration of a nanorod embedded in viscoelastic medium according to the nonlocal strain gradient theory. Viscoelastic medium is considered based on Kelvin-Voigt model. Governing partial differential equation is derived based on longitudinal equilibrium and analytical solution is obtained by adopting harmonic motion solution for the nanorod. Modal frequencies and corresponding damping ratios are presented to demonstrate the influences of nonlocal parameter, material length scale, elastic and damping parameters of the viscoelastic medium. It is observed that material length scale parameter is very influential on modal frequencies especially at lower values of nonlocal parameter whereas increase in length scale parameter has less effect at higher values of nonlocal parameter when the medium is purely elastic. Elastic stiffness and damping coefficient of the medium have considerable impacts on modal frequencies and damping ratios, and the highest impact of these parameters on frequency and damping ratio is seen in the first mode. Results calculated based on strain gradient theory are quite different from those calculated based on classical elasticity theory. Hence, nonlocal strain gradient theory including length scale parameter can be used to get more accurate estimations of frequency response of nanorods embedded in viscoelastic medium.