• Title/Summary/Keyword: Elastic Foundations

Search Result 235, Processing Time 0.019 seconds

Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations (두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성)

  • 류봉조;임경빈;윤충섭;류두현
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1075-1082
    • /
    • 2000
  • The paper describes the vibration and stability of tapered beams on two-parameter elastic foundations. The two-parameter elastic foundations are constructed by distributed Winkler springs and a shearing layer as of ten used in soil models. The shear deformation and the rotatory inertia of a beam are taken into account. Governing equations are derived from energy expressions using Hamilton\`s principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration of a beam with an axial force are presented and compared when other solutions are available. Vibration frequencies, mode shapes, and critical forces of a tapered Timoshenko beam on elastic foundations under an axial force are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters and boundary conditions.

  • PDF

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF

Free Vibrations of Cylindrical Shells on Inclined Partial Elastic Foundation (경사진 부분 탄성 지지부를 갖는 원통셸의 자유진동)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2014
  • The free vibration characteristics of cylindrical shells on inclined partial elastic foundations are investigated by an analytical method. The cylindrical shell is partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The area of elastic foundation is not uniform and varies along the axial direction of the shell. The motion of shell is represented by first-order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The governing equation is obtained using the Rayleigh-Ritz method and a variation approach. To validate the present method, the numerical example is presented and compared with the present FEA results. The numerical results reveal that the elastic foundation has significant effect on vibration characteristics.

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.