• Title/Summary/Keyword: Elastic Budding

Search Result 4, Processing Time 0.066 seconds

Elastic Behavior Characteristics of GFRP Pipes Reinforced with Ribs (리브 보강 GFRP 관로의 탄성 좌굴거동 특성)

  • Seo Joo-Hyung;Han Taek-Hee;Yoon Ki-Yong;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.119-126
    • /
    • 2006
  • The elastic budding strength of a GFRP pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting tlje budding strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the budding strength because GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with FE analysis results. Analysis results show that a rib-reinforced pipe has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

  • PDF

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.129-135
    • /
    • 2004
  • Plate has cutout inner bottom and girder and floor etc in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc. Because cutout's existence gnaws in this place, and, elastic budding strength by load rouses large effect in ultimate strength. Therefore, perforated plate elastic budding strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step if ship. Therefore, and, reasonable elastic budding strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method

  • PDF

Elastic Buckling Characteristics of Corrugated Culverts of Orthotropic Material (직교 이방성 재료 파형 암거의 탄성 화굴 거동 특성)

  • Kim Tae-Yeon;Han Taek-Hee;Han Keum-Ho;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.111-118
    • /
    • 2006
  • The elastic buckling strength of a corrugated culvert made of orthotropic material such as FRP was evaluated. The height and length of a corrugated wave and the thickness of the culvert were considered as factors affecting the buckling strength of the culvert. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting on the buckling strength of the used orthotropic material. Buckling strengths of various corrugated culvert models with different shapes and stiffness ratio were evaluated by FE analyses and a formula to estimate the elastic buckling strength was suggested from the regression with FE analysis results. Analysis results show that a corrugated culvert has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated culverts made of orthotropic material.

  • PDF

Evaluation of Effective Length Factor by Using an Amplification Factor (확장계수를 적응한 기둥의 유효좌굴길이 계수 산정)

  • Choi, Dong-Ho;Yoo, Hoon;Shin, Jay-In;Kim, Sung-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.369-374
    • /
    • 2007
  • For a stability design of steel frames, AISC-LRFD specification recommend to use Alignment Chart and story-based methods in order to determine an effective budding length. Recently, elastic buckling analysis, which is the method that calculate the effective length of members using eigenvalue of the overall structure, has been widely used in practical design of steel frames because this method can be performed effectively and automatically by computers. However, it can in some cases lead to unexpectedly large effective length in column having small axial forces. Therefore, this paper propose a method using elastic buckling analysis, which estimate a proper effective buckling length for all members having a small axial force. For verification of proposed method, it is compared with system based approach and stiffness distribution factor method. As a result, proposed method can rationally solve a problem in some case of column having small axial force. Also, adoption range for proposed method is established.

  • PDF