• Title/Summary/Keyword: Elastic

Search Result 9,918, Processing Time 0.044 seconds

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

Brittle rock property and damage index assessment for predicting brittle failure in underground opening (지하공동의 취성파괴 예측을 위한 암석물성 및 손상지수 평가)

  • Lee, Kang-Hyun;Bang, Joon-Ho;Kim, Jin-Ha;Kim, Sang-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.327-351
    • /
    • 2009
  • Laboratory tests are performed in this paper to investigate the brittle failure characteristics of over-stressed rocks taken in deep depth. Also, numerical simulation performed using that the so-called CWFS(Cohesion Weakening Frictional Strengthening) model is known to predict brittle failure phenomenon reasonably well. The most typical rock types of Korean peninsula - granite and gneiss - were used for testing. Results of uniaxial compression tests showed that the crack initiation stress was about 41 % to 42% of the uniaxial compressive strength regardless of rock types, where as, the crack damage stress of granite was about 75%, and that of gneiss was about 97%. Through the damage-controlled test, strength parameters of each rock were obtained as a function of damage degree. After the peak, the crack damage stress and the maximum stress were decreased, The cohesion was decreased and the friction angle was increased with increase of rock damage. Before reaching the peak, the elastic modulus was slightly increased, while decreased after the peak. Poisson's ratio was increased as the damage of rock proceeds. Comparison of uniaxial compression tests and damage-controlled tests shows the crack initiation stress estimated from the damage-controlled test fluctuated within the range of crack initiation stress obtained from the uniaxial compression test; the crack damage stress was less than that estimated from the uniaxial compression test. In order to predict the critical depth that brittle failure occurs, numerical simulations using the CWFS model were performed for an example site. Material parameters obtained from the laboratory tests mentioned above were used for CWFS simulation. Comparison between the critical depth predicted from the numerical simulation using the CWFS model and that predicted by using the damage index proposed by Martin et al.(l999), showed that critical depth cannot be reasonably predicted by the currently used damage index except for circular tunnels. A modified damage index was proposed by the author which takes the shape of tunnels other than circular into account.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

Analysis of trends in the use of geophysical exploration techniques for underwater cultural heritage (수중문화유산에 대한 지구물리탐사 기법 활용 동향 분석)

  • LEE Sang-Hee;KIM Sung-Bo;KIM Jin-Hoo;HYUN Chang-Uk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.174-193
    • /
    • 2023
  • Korea is surrounded by the sea and has rivers connecting to it throughout the inland areas, which has been a geographical characteristic since ancient times. As a result, there have been exchanges and conflicts with various countries through the sea, and rivers have facilitated the transportation of ships carrying grain, goods paid for by taxes, and passengers. Since the past, the sea and rivers have had a significant impact on the lives of Koreans. Consequently, it is expected that there are many cultural heritages submerged in the sea and rivers, and continuous efforts are being made to discover and preserve them. Underwater cultural heritage is difficult to discover due to its location in the sea or rivers, making direct visual observation and exploration challenging. To overcome these limitations, various geophysical survey techniques are employed. Geophysical survey methods utilize the physical properties of elastic waves, including their reflection and refraction, to conduct surveys such as bathymetry, underwater topography and strata. These techniques detect the physical characteristics of underwater objects and seafloor formation in the underwater environment, analyze differences, and identify underwater cultural heritage located on or buried in the seabed. Bathymetry uses an echo sounder, and an underwater topography survey uses a side-scan sonar to find underwater artifacts lying on or partially exposed to the seabed, and a marine shallow strata survey uses a sub-bottom profiler to find underwater heritages buried in the seabed. However, the underwater cultural heritage discovered in domestic waters thus far has largely been accidental findings by fishermen, divers, or octopus hunters. This study aims to analyze and summarize the latest research trends in equipment used for underwater cultural heritage exploration, including bathymetric surveys, underwater topography surveys and strata surveys. The goal is to contribute to research on underwater cultural heritage investigation in the domestic context.

Studies on the Chilling Injury of Rice seedlings. 1. Characterization of Chilling Injury & Recovery Different Leaf Stages (수도의 유초기 냉해에 관한 연구 1. 유묘기 엽령별 냉해발현 및 회복양태)

  • Kwon, Y.W.; Kim, J.H.;Ahn, S.B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.1
    • /
    • pp.11-24
    • /
    • 1979
  • To characterize elastic and plastic chilling injury, rice seedlings grown at 28/$16^{\circ}C$ day/night temp. under 20K lux (13hrs.) in a phytotron were subjected to a 11/$6^{\circ}C$, 20K lux condition for 2, 4, 6 or 8 days at 1, 2, 3, 4 or 5th leaf-stage, respectively, followed by further growth under 28/$16^{\circ}C$condition till 30th day after seeding. Japonica variety Jinheung and Chulwon No.1 survived almost 100% without any significant , discoloration and death of leaves due to chilling even under the chilling of 8 days at all seedling ages tested. Tongil and Yushin, varieties from Indica x Japonica cross, showed increasing discoloration of leaves and death of plants with increase in chilling intensity. The longest chilling duration shown seedling death less than 5% was 4, 6, 1, 4, 8 days for Tongil, and 6, 6, 1, 2, 2, days for Yushin at 1, 2, 3, 5th leaf-stage, respectively. The degree of discoloration and death of leaves or suppression of height growth was not explicitly related to seedling death or the dry weight reduction. The degree of seedling death or dry weight reduction could differentiate chilling tolerance of varieties and seedling ages, but somewhat differently. Reduction in dry weight due to chilling occurred even without any visible injury or seedling death. These suggest that both the degree of seedling death and reduction in dry weight should be considered in the test of varieties for chilling tolerance. Combined evaluation of seedling death and dry weight reduction indicated the most susceptible seedling age to chilling injury to be 1 to 2nd leaf-stage for Jinheung, 2 to 3rd leaf-stage for Chulwon No.1, 3rd leaf- stage for Tongil and Yushin, respectively.

  • PDF

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.

An Anatomical Study of the Posterior Tympanum (한국인 중이강후벽에 관한 형태해부학적 고찰)

  • 양오규;윤강묵;심상열;김영명
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1982.05a
    • /
    • pp.17.2-19
    • /
    • 1982
  • The sinus tympani is subject to great variability in the size, shape and posterior extent. A heavy compact bony zone, especially in the posterior portion and the narrow space between the facial nerve and posterior semicircular canal are the limitation of surgical approach. The facial recess should be opened, creating a wide connection between the mesotympanum and mastoid in the Intact canal wall tympanoplasty with mastoidectomy. The surgically created limits of the facial recess are the facial nerve medially, the chorda tympani laterally and the bone adjacent to the incus superiorly. Using adult Korean's thirty-five temporal bones, the authors measured the osteologic reslationship in the posterior tympanum, especially sinus tympani and facial recess. The result was as followed. 1. The average distance from the anterior end of the pyramidal eminence. 1) to the edge of the sinus tympani directly posterior was 2.54(1.05-5.40)mm. 2) to the maximum posterior extent was 3.22(1.25-7.45)mm. 3) to the maximum cephaled extent was 0.67 (0.40-1.75)mm. 2. The boundary of the sinus tympani was 82.9% from the lower margin oval window to the upper margin round window niche. 3. The deepest part of the sinus tympani was 62.9% in the mid portion, between the ponticulus and subiculum. 4. The oblique dimension from the fossa incudis above to the hypotympanum below was 8.13(7.90-9.55)mm. 5. The transverse dimensions midway between the oval window above and round window below was 3.00(2.85-3.45)mm. 6. The transverse dimension at the level of the fossa incudis was 1.81(1.40-2.15)mm. 7. The facial nerve dehiscence was 14.3%. 8. Anterior-posterior diameter of the footplate was 2.98(2.85-3.05) mm. 9. The average distance from the footplate. 1) to the cochleariform process was 1.42(1.35-1.55) mm. 2) to the round window niche was 1.85(1.45-2.10) mm.

  • PDF

Effect of Posture on the Distribution of Pulmonary Ventilation in Patients with Increased Closing volume (폐쇄용적(Closing Volume)이 증가된 만성 폐질환 환자에서 체위에 따른 폐환기량의 변화)

  • Kim, Young-Tae;Kim, Mee-Kyung;Lim, Chae-Man;Koh, Youn-Suck;Kim, Woo-Sung;Ryu, Jin-Sook;Lee, Myung-Hae;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.6
    • /
    • pp.631-637
    • /
    • 1993
  • Background: In normal adults, ventilation is uneven and greater in the base than the apex of the lung in tidal volume breathing. However infants have fragile chest wall and reduced elastic recoil, resulting in easy closure of peripheral airways especially in the dependent portion of the lung. So ventilation in infants is greater in the apex than the base of the lung. We assumed that in adults whose closing volume is increased, dependent portion could be easily collapsed during tidal breathing and ventilation could be greater in the uppear than than the lower portion of the lung. Methods: We measured spirometry and closing volume(CV) in normal controls and in patients with chronic lung disease. Also we measured fractional distribution of ventilation at supine, left lateral and right lateral decubitus with $^{133}Xe$ ventilation scan in normal controls, patients with normal closing volume and patients with increased closing volume. Results: The subjects consisted of 7 normal controls(mean $age{\pm}SD$, $62.9{\pm}6.1$ years). 6 patients with normal CV($62.8{\pm}8.2$ years) and 7 patients with increased CV($63.0{\pm}15.3$ years). 1) Normal controls have mean(${\pm}SD$) FVC $104{\pm}11%$ of predicted value, $FEV_1\;120{\pm}16%,\;FEV_1/FVC\;112{\pm}5%$ and CV $86.9{\pm}12.5%$. Patients with normal CV have FVC $62{\pm}11%,\;FEV_1\;54{\pm}17%,\;FEV_1/FVC\;84{\pm}23%$ and CV $92.6{\pm}15.5%$. Patients with increased CV, have FVC $53{\pm}9%,\;FEV_1\;38{\pm}13,\;FEV_1/FVC\;69{\pm}16%$ and CV $176.1{\pm}36.6%$, CV was significantly different between two patient groups(p<0.02) 2). In normal controls mean fractional ventilation to left lung was $48.1{\pm}5.3%$ at supine, $54.1{\pm}9.8%$ at dependent and $40.9{\pm}6.5%$ at left uppermost position. In patients with normal CV mean fractional ventilation to left lung was $44.6{\pm}2.1%$ at supine, $59.7{\pm}5.6%$ at left dependent and $31.7{\pm}8.3%$ at left uppermost position. In patients with increased CV mean fractional ventilation to left lung was $48.7{\pm}4.5%$ at supine, $41.7{\pm}6.6%$ at left dependent and $60.9{\pm}15.7%$ at left uppermost position. In normal controls and patients with normal CV, ventilation to left lung at left dependent position tends to be higher than that at supine position but without statisitical significance and it was significantly lower at left uppermost than at left lung dependent position. In patients with increased CV, ventilation to left at left dependent position tends to be higher than that at supine position but without significance and it was significantly higher at left uppermost than that at left dependent position. Conclusion: These data suggest that in patients with increased CV ventilation to one side of lung could be higher at uppermost than at dependent position on lateral decubitus during tidal breathing and this fact should be taken into account in positioning of patients with unilateral lung disease.

  • PDF