• Title/Summary/Keyword: Ekman Layer

Search Result 48, Processing Time 0.021 seconds

Study on the Motion of Floater Structure for Design of Wave Energy Generation in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 거동에 관한 연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Park, Young-Kyu;Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.632-639
    • /
    • 2011
  • In order to design a wave energy generate system, a 6-Degree of freedom motion analysis technique was applied to the three-Dimensional CFD analysis on two floating body and the behavior was interpreted according to the nature of the incoming wave. The waves are generated by the same type of wave in the model of tank using the piston type, but due to the shallow water that is generated from the bottom of the wave energy is attenuated by Ekman boundary layer. According to the wavelength of waves generated by the result of evaluating the behavior of floating body, it is concluded that 0.3m is the maximum amplitude of wavelength of 5m, and 0.15m is the minimum amplitude of wavelength of 1m. 1.06m is the maximum distance between the two floaters of wavelength of 6m.

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

The Effect of Wind Stress in the Southwestern Coastal Waters of the Japan Sea (동해 연안역 해수순환에 대한 바람응력 효과)

  • CHANG Sun-Duck;KIM Jong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.538-548
    • /
    • 1993
  • In order to estimate the influence of wind stress in the southwestern coastal waters of the Japan Sea, the wind stress was estimated from the shipboard wind data of the Fisheries Research and Development Agency along the serial observation lines and Buoy No. 6 of the Japan Meteorological Agency. 5,100 wind data are used to construct a data set of monthly mean wind stress during 10 years from 1978 to 1987. The negative values of the mean zonal wind stress curl at Ulleung Basin in the study area seem to be responsible for the formation of the warm core. The volume transport of the East Korea Warm Current are estimated quantitatively by the variations of the Ekman transport associated with the reversing direction of the monsoon. And the distribution of the warm core is explained by the simple three layer model.

  • PDF

Dynamically Induced Anomalies of the Japan/East Sea Surface Temperature

  • Trusenkova, Olga;Lobanov, Vyacheslav;Kaplunenko, Dmitry
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.11-29
    • /
    • 2009
  • Variability of sea surface temperature (SST) in the Japan/East Sea (JES) was studied using complex empirical orthogonal function (CEOF) analysis. Two daily data sets were analyzed: (1) New Generation 0.05o-gridded SST from Tohoku University, Japan (July 2002-July 2006), and (2) 0.25o-gridded SST from the Japan Meteorological Agency (October 1993-November 2006). Linkages with wind stress curl were revealed using 6-h 1o-gridded surface zonal and meridional winds from ancillary data of the Sea- WiFS Project, a special National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) product (1998-2005). SST anomalies (SSTA) were obtained by removing the seasonal signal, estimated as the leading mode of the CEOF decomposition of the original SST. Leading CEOF modes of residual SSTA obtained from both data sets were consistent with each other and were characterized by annual, semiannual, and quasi-biennial time scales estimated with 95% statistical significance. The Semiannual Mode lagged 2 months behind the increased occurrence of the anticyclonic (AC) wind stress curl over the JES. Links to dynamic processes were investigated by numerical simulations using an oceanic model. The suggested dynamic forcings of SSTA are the inflow of subtropical water into the JES through the Korea Strait, divergence in the surface layer induced by Ekman suction, meridional shifts of the Subarctic Front in the western JES, AC eddy formation, and wind-driven strengthening/weakening of large-scale currents. Events of west-east SSTA movement were identified in July-September. The SSTA moved from the northeastern JES towards the continental coast along the path of the westward branch of the Tsushima Current at a speed consistent with the advective scale.

A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR (회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석)

  • Park, J.J.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

Experimental Simulation of Local External Forcing of the Contained Rotating Flow (회전반 유체실험에서 국지적 외력의 실험적 모의)

  • Yi, Chang-Won;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2000
  • Simulation of local external forcing and its response in the rotation table experiment has been investigated. Spatially-uniform external forcings have been applied in many experimental studies, however, based on the fact that the north-south distribution of the wind-stress curl and the existence of local maximum of the sea surface heat loss in the northern part of the East Sea, new method of combined effects of local forcings has been employed in separate experiments. Carefully designed local source or sink at the bottom of the cylindrical container can produce horizontal pressure gradient within the Ekman layer, and consequently the interior also attains the same pressure gradient that produces geostrophic interior circulation. In order to keep free surface during the local-surface cooling, a side-wall cooling method is suggested. For the various type of local forcing including the effects local cooling and the periodic change of local wind-stress curl, western-boundary flow in terms of its strength, position of separation from the boundary have been observed.

  • PDF

Wind Effect on Tidal Currents in the Neighborhood of Haeundae Beach (해운대 해수욕장 전면 해상의 조류에 미치는 바람효과)

  • Lee, Moon-Ock;Lee, Jong-Sup;Kim, Byeong-Kuk;Kim, Jong-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.34-46
    • /
    • 2010
  • We observed tidal currents throughout all four seasons in 2007 at a single station, located 1.6km off Haeundae Beach and compared these current data with wind data. The direction of seasonal wind represented a similarity between the winds at sea and on land but the speed of wind at sea was almost three times stronger than the wind on land. In addition, the wind at sea turned out to considerably affect on tidal currents, particularly from late summer to autumn. On the other hand, the thickness of Ekman Layer, indicating a limitation of wind influence, was estimated to be 31.8 m on average, suggesting that the entire water column is under the influence of wind. Therefore, we are required to consider the wind stress into the analysis of tidal currents for the prevention of the loss of sand from Haeundae Beach.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.