• Title/Summary/Keyword: Eisenstein sheaves

Search Result 1, Processing Time 0.021 seconds

SPHERICAL HALL ALGEBRAS OF CURVES AND HARDER-NARASIMHAN STRATAS

  • Schiffmann, Olivier
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.953-967
    • /
    • 2011
  • We show that the characteristic function $1S_{\underline{\alpha}}$ of any Harder-Narasimhan strata $S{\underline{\alpha}}\;{\subset}\;Coh_X^{\alpha}$ belongs to the spherical Hall algebra $H_X^{sph}$ of a smooth projective curve X (defined over a finite field $\mathbb{F}_q$). We prove a similar result in the geometric setting: the intersection cohomology complex IC(${\underline{S}_{\underline{\alpha}}$) of any Harder-Narasimhan strata ${\underline{S}}{\underline{\alpha}}\;{\subset}\;{\underline{Coh}}_X^{\underline{\alpha}}$ belongs to the category $Q_X$ of spherical Eisenstein sheaves of X. We show by a simple example how a complete description of all spherical Eisenstein sheaves would necessarily involve the Brill-Noether stratas of ${\underline{Coh}}_X^{\underline{\alpha}}$.