• Title/Summary/Keyword: Eigenvector Method

Search Result 159, Processing Time 0.026 seconds

An Evaluation Model of Quality System (품질시스템 평가모델)

  • 김종수;황승국
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.95-113
    • /
    • 1999
  • This paper is to propose an evaluation model of quality system using the concept from the evaluation method of each stage in QFD(Quality Function Deployment). The data of the performance level and weights for the quality system and the job on quality loop in each enterprise has been obtained from the 8 experts who are in charge of quality system construction. Here, the weights were computed by means of the eigenvector method. In this paper, we can acquire the evaluated score for the present level of the quality system. This method will help to manage and improve the quality system. We show the efficiency of this method by illustrating case studies.

  • PDF

A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN AND SKEW-HERMITIAN MATRICES

  • Min, Cho-Hong;Lee, Soo-Joon;Kim, Se-Goo
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.185-199
    • /
    • 2011
  • In this paper, we present a new extended Jacobi method for computing eigenvalues and eigenvectors of Hermitian matrices which does not use any complex arithmetics. This method can be readily applied to skew-Hermitian and real skew-symmetric matrices as well. An example illustrating its computational efficiency is given.

An Evaluation Method on Enterprise Using Fuzzy Integral (퍼지적분을 이용한 기업평가법)

  • 황승국
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.271-280
    • /
    • 1996
  • This paper presents an evaluation method on enterprise using fuzzy integral which is defined by fuzzy measures. The weight of criteria is computed by eigenvector method. And, using this calculated weight, the total evaluation value is obtained from the weight of by means of Pl & Bel measures. This value means the level on enterprise's situation considering from the viewpoint of evaluation factors.

  • PDF

Binary Tree Vector Quantization Using Spatial Masking Effect (공간 마스킹 효과를 적용한 이진트리 벡터양자화)

  • 유성필;곽내정;윤태승;안재형
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.369-372
    • /
    • 2003
  • In this paper, we propose impr oved binary tree vector quantization based on spatial sensitivity which is one of the human visual properties. We combine the weights based on spatial masking effect according to changes of three primary colors in blocks of images with the process of splitting nodes using eigenvector in binary tree vector quantization. The test results show that the proposed method generates the quantized images with fine color and performs better than the conventional method in terms of clustering the similar regions. Also the proposed method can get the better result in subjective qualify test and PSNR.

  • PDF

A Parallel Algorithm of Davidson Method for Eigenproblems (고유치 솔버 Davidson Method 의 병렬화)

  • Kim, Hyoung-Joong;Zhu, Yu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.12-14
    • /
    • 1997
  • The analysis of eigenvalue and eigenvector is a crucial procedure for many electromagnetic computation problems. However, eigenpair computation is timing-consuming task. Thus, its parallelization is required for designing large-scale and precision three-dimensional electromagnetic machines. In this paper, the Davidson method is parallelized on a cluster of workstations. Performance of the parallelization scheme is reported. This scheme is applied to a ridged waveguide design problem.

  • PDF

A Study on the Tensor-Valued Median Filter Using the Modified Gradient Descent Method in DT-MRI (확산텐서자기공명영상에서 수정된 기울기강하법을 이용한 텐서 중간값 필터에 관한 연구)

  • Kim, Sung-Hee;Kwon, Ki-Woon;Park, In-Sung;Han, Bong-Soo;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.817-824
    • /
    • 2007
  • Tractography using Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvector in the white matter of the brain. However, the fiber tracking methods suffer from the noise included in the diffusion tensor images that affects the determination of the principal eigenvector. As the fiber tracking progresses, the accumulated error creates a large deviation between the calculated fiber and the real fiber. This problem of the DT-MRI tractography is known mathematically as the ill-posed problem which means that tractography is very sensitive to perturbations by noise. To reduce the noise in DT-MRI measurements, a tensor-valued median filter which is reported to be denoising and structure-preserving in fiber tracking, is applied in the tractography. In this paper, we proposed the modified gradient descent method which converges fast and accurately to the optimal tensor-valued median filter by changing the step size. In addition, the performance of the modified gradient descent method is compared with others. We used the synthetic image which consists of 45 degree principal eigenvectors and the corticospinal tract. For the synthetic image, the proposed method achieved 4.66%, 16.66% and 15.08% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively. For the corticospinal tract, at iteration number ten the proposed method achieved 3.78%, 25.71 % and 11.54% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively.

Jammer Suppression by Eigen Analysis in Multi-Carrier Radar (멀티캐리어 레이더에서 고유치 해석에 의한 재머 억제)

  • Jeon, Hyeon-Mu;Shin, Seong-Kwan;Chung, Yong-Seek;Chung, Won-Zoo;Kim, Jong-Mann;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1284-1291
    • /
    • 2014
  • For detection and parameter estimation, a multicarrier radar should discriminate a channel containing jamming signal and either leave it out or regenerate jammer suppressed target signal. To discriminate jamming channels, we use the angular spectrum of an eigenvector that embeds target echoes and jamming signals. We propose a criteria to discriminate the jammer channels and its basis through mathematical analysis. Moreover, we show some procedures to regenerate the jammer suppressed target echoes. Finally, the validity of the proposed method is demonstrated through simulation results showing improved performance in terms of direction of arrival(DOA) estimation.

The Classification and Interpretation of Korean Soils Derived from Sedimentary Rocks using Multidimensional Scaling (다차원척도법을 이용한 우리나라 퇴적암 유래토양의 분류 및 해설)

  • Sonn, Yeon-Kyu;Seo, Myung-Chul;Park, Chan-Won;Hyun, Byung-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • It is very important to characterize five major properties of topography, drainage class, soil texture, available soil depth, and gravel content for soil survey. We used multidimensional scaling method for analyzing five major properties for the soils originated from sedimentary rocks to understand their relationships. We simplified 5 major characteristics on soils derived from sedimentary rocks. That is, topographic factor was 15 to 9, soil texture was 32 to 6, drainage class was 6 to 5, available depth was 4, and gravel content was 3. For the viewpoint of eigenvector, from dimension 2, 3 to dimension 1, 4, mountain soils and more fine soils dominated. By eigenvalue, there was no tendency, but in details, was some tendency between small groups. Like this, closely observe exceptional distribution of soils, we need improved intra-group homogeneity based on weight control of soil factor, addition and subtraction of soil factors. Also, we carefully analyzed soil characteristics involved intra-group, then we need reconsideration of past classification units.

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

Determination of Reactivities by MO Theory (ⅩⅥ). Theoretical Studies on Acid Catalyzed Displacement Reactions at Carbonyl Carbon (MO 理論에 依한 反應性의 決定 (第16報). 카르보닐炭素의 酸觸媒置換反應에 關한 理論的 硏究)

  • Ikchoon Lee;Soonki Rhee;Kae Soo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.201-208
    • /
    • 1980
  • The CNDO/2 MO method has been used to study gas phase reactions of protonated acetaldehyde with alcohols and protonated acetic acid with alcohols respectively by optimizing state geometries. Results showed that the former is predicted to proceed by alkyl-O cleavage and the latter by acyl-O cleavage. It has also been found using eigenvector properties of reactants that the former should be a charge controlled while the latter an orbital controlled reaction. According to the calculated activation energies assuming the transition states proposed by Caserio et al., the predicted reactivity order for alcohols agreed with the experiments for the latter but the order predicted was the reverse of the experimental one for the former.

  • PDF