• Title/Summary/Keyword: Eigenvalue and Eigenvector

Search Result 127, Processing Time 0.027 seconds

Students' conceptual development of eigenvalue and eigenvector based on the situation model (상황모델에 기반한 학생들의 고유치와 고유벡터 개념발달)

  • Shin, Kyung-Hee
    • The Mathematical Education
    • /
    • v.51 no.1
    • /
    • pp.77-88
    • /
    • 2012
  • This qualitative research provides a situation model, which is designed for promoting learning of eigenvalue and eigenvector. This study also demonstrates the usefulness of the model through a small groups discussion. Particularly, participants of the discussion were asked to decide the numbers of milk cows in order to make constant amounts of cheese production. Through such discussions, subjects understood the notion of eigenvalue and eigenvector. This study has following implications. First of all, the present research finds significance of situation model. A situation model is useful to promote learning of mathematical notions. Subjects learn the notion of eigenvalue and eigenvector through the situation model without difficulty. In addition, this research demonstrates potentials of small groups discussion. Learners participate in discussion more actively under small group debates. Such active interaction is necessary for situation model. Moreover, this study emphasizes the role of teachers by showing that patience and encouragement of teachers promote students' feeling of achievement. The role of teachers are also important in conveying a meaning of eigenvalue and eigenvector. Therefore, this study concludes that experience of learning the notion of eigenvalue and eigenvector thorough situation model is important for teachers in future.

Eigenstructure Assignment Control for Linear Continuous-Time Systems with Probabilistic Uncertainties (확률적 불확실성을 갖는 선형 연속 시간 시스템의 고유구조 지정제어)

  • 서영봉;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.145-152
    • /
    • 2004
  • In this paper, an S(stochastic)-eigenvalue and its corresponding S-eigenvector concept for linear continuous-time systems with probabilistic uncertainties are proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the stochastic variable parameters in the dynamic model of a plant. An S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue/-eigenvector concept is also proposed. The proposed control design scheme based on the proposed concept is applied to a longitudinal dynamics of an open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure effects. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on the system.

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재료 내의 V-노치 균열에 대한 고유치와 고유벡터 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.129-139
    • /
    • 2000
  • The problem of eigenvalue and eigenvector is obtained from a V-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded interface conditions. The complex stress function is assumed as the two-term William's type. The eigenvalue is solved by a commercial numerical program, MATHEMATICA to discuss stress singularities for V-notched cracks in pseudo-isotropic dissimilar materials. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination to eigenvector coefficients associated with eigenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

  • PDF

An Analysis of Eigenvector Coefficient for V-notched Cracks in Pseudo-isotropic and Anisotropic Dissimilar Materials (유사등방성과 이방성 이종재 V-노치 균열의 고유벡터계수 해석)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.88-94
    • /
    • 2001
  • The V-notched crack problem in dissimilar materials can be formulated as an eigenvalue problem. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of the eigenvector coefficients associated with eigenvalues for V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials. The RWCIM algorithm is programed by the commercial numerical program, MATHEMATICA. The numerical results obtained are shown that the RWCIM is a useful method for determining the eigenvector coefficients of V-notched cracks in pseudo-isotropic and anisotropic dissimilar materials.

  • PDF

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

COMMUTATIVE ELLIPTIC OCTONIONS

  • Surekci, Arzu;Gungor, Mehmet Ali
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.195-208
    • /
    • 2022
  • In this article, the matrix representation of commutative elliptic octonions and their properties are described. Firstly, definitions and theorems are given for the commutative elliptic octonion matrices using the elliptic quaternion matrices. Then the adjoint matrix, eigenvalue and eigenvector of the commutative elliptic octonions are investigated. Finally, α = -1 for the Gershgorin Theorem is proved using eigenvalue and eigenvector of the commutative elliptic octonion matrix.

Direction Assignment of Left Eigenvector in Linear MIMO System (선형 다변수 입출력 시스템에서 좌 고유벡터의 방향 지정)

  • Kim, Sung-Hyun;Yang, Hyun-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • In this paper, we propose novel eigenstructure assignment method in full-state feedback for linear time-invariant MIMO system such that directions of some left eigenvectors are exactly assigned to the desired directions. It is required to consider the direction of left eigenvector in designing eigenstructure of closed-loop system, because the direction of left eigenvector has influence over excitation by associated input variables in time-domain response. Exact direction of a left eigenvector can be achieved by assigning proper right eigenvector set satisfying the conditions of the presented theorem based on Moore's theorem and the orthogonality of left and right eigenvector. The right eigenvector should reside in the subspace given by the desired eigenvalue, which restrict a number of designable left eigenvector. For the two cases in which desired eigenvalues are all real and contain complex number, design freedom of designable left eigenvector are given.

Improvement of the Rayleigh Quotient Iteration Method (RQI 기법의 성능 개선)

  • Jeon, C.W.;Kim, H.J.;Lee, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.319-321
    • /
    • 1994
  • When a few eigenvalues and eigenvectors are desired, Rayleigh Quotient Iteration(RQI) is widely used. The ROI, however, cannot give maximum or minimum eigenvalue/eigenvector. In this paper, Modified Rayleigh quotient Iteration(MRQI) is developed. The MRQI can give the maximum or minimum eigenvalue/eigenvector regardless of tile initial starting vector.

  • PDF

S-Eigenvalue Concept for Linear Continuous-Time Systems with Probabilistic Uncertainties

  • Seo, Young-Bong;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.5-44
    • /
    • 2002
  • We propose a concept of the S-eigenvalue(stochastic-eigenvalue) along with corresponding eigenvector, and then we define the PDF corresponding to the S-eigenvalue on a complex plane. Based on the S-eigenvalue concept, we will establish the S-stability concept for linear continuous-time systems with probabilistic uncertainties in the system matrix. These results explicitly characterize how the S-eigenvalue in the complex plane may impose S-stability on S-eigenstructure assignment. Finally, we present numerical examples to illustrate the proposed concept.

  • PDF

An Iterative Method for Natural Frequency and Mode Shape Sensitivities (고유진동수와 모우드의 민감도를 구하기 위한 반복법)

  • JUNG, GH;JUNG, HJ;OH, JW;LEE, IW
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.21-34
    • /
    • 1996
  • A numerical method is presented for computation of eigenvector derivatives used an iterative procedure with guaranteed convergence. An approach for treating the singularity in calculating the eigenvector derivatives is presented, in which a shift in each eigenvalue is introduced to avoid the singularity. If the shift is selected properly, the proposed method can give very satisfactory results after only one iteration. A criterion for choosing an adequate shift, dependent on computer hardware is suggested ; it is directly dependent on the eigenvalue magnitudes and the number of bits per numeral of the computer. Another merit of this method is that eigenvector derivatives with repeated eigenvalues can be easily obtained if the new eigenvectors are calculated. These new eigenvectors lie "adjacent" to the m (number of repeated eigenvalues) distinct eigenvectors, which appear when the design parameter varies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The results are compared with those of Nelson's method which can find the exact eigenvector derivatives. For the case of repeated eigenvalues, a cantilever beam is considered. The results are compared with those of Dailey's method which also can find the exact eigenvector derivatives. The design parameter of the cantilever plate is its thickness, and that of the cantilever beam its height.

  • PDF