• 제목/요약/키워드: Eigenpair

검색결과 18건 처리시간 0.028초

Integrated Structural and PD-Control Optimization of Flexible Rotor Supported by Active Magnetic Bearings

  • 전한욱;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.736-742
    • /
    • 2008
  • This paper proposes new searching algorithm for the optimal PD gains of flexible rotor supported by active magnetic bearings. Under the assumption of linearized bearing parameters with respect to PD gains, the performance index in quadratic form is defined and steepest descent method is adopted for determining local minimum. Moreover, the eigenpair sensitivity concept is utilized to evaluate the sensitivity of performance index. To evaluate the effectiveness of suggested algorithm, the finite element model is constructed and its reduced model is retained in modal domain. Given starting gains, the optimal gains are successfully found and the control performance is demonstrated by simulation to show the efficiency of the proposed method.

  • PDF

MPMD 방식의 동기/비동기 병렬 혼합 멱승법에 의한 거대 고유치 문제의 해법 (A Synchronous/Asynchronous Hybrid Parallel Power Iteration for Large Eigenvalue Problems by the MPMD Methodology)

  • 박필성
    • 정보처리학회논문지A
    • /
    • 제11A권1호
    • /
    • pp.67-74
    • /
    • 2004
  • 대부분의 병렬 알고리즘은 동기 알고리즘으로, 올바른 계산을 위해 작업을 일찍 끝낸 빠른 프로세서들은 동기점에서 느린 프로세서를 기다려야 하는데, 프로세서들의 성능이 다를 경우 연산 속도는 가장 느린 프로세서에 의해 결정된다. 본 논문에서는 거대 고유치 문제의 주요 고유쌍을 구하는 문제에 있어서 빠른 프로세서의 유휴 시간을 줄여 수렴 속도를 가속한 수 있는 동기/비동기 혼합 알고리즘을 고안하고 이를 MPMD 프로그래밍 방식을 사용하여 구현하였다.

비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법 의 개선 (Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System)

  • 문영종;박선규;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.125-130
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 대수적 방법의 개선 (Improved Algebraic Method for Computing Eigenpair Sensitivities of Damped System)

  • 조홍기;고만기;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.501-507
    • /
    • 2000
  • This paper presents a very simple procedure for determining the sensitivities of the eigenpairs of damped vibratory system with distinct eigenvalues. The eigenpairs derivatives can be obtained by solving algebraic equation with a symmetric coefficient matrix whose order is (n+1) ${\times}$ (n+1), where n is the number of degree of freedom the mothod is an improvement of recent work by I. W. Lee, D. O. Kim and G. H. Jung; the key idea is that the eigenvalue derivatives and the eigenvector derivatives are obtained at once via only one algebraic equation, instead of using two equations separately as like in Lee and Jung's method. Of course, the method preserves the advantages of Lee and Jung's method.

  • PDF

비대칭 감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 모드법의 개선 (Modified Modal Method for Eigenderivative Analysis of Asymmetric Damped System)

  • 문영종;박선규;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.509-514
    • /
    • 2001
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

비대칭 감쇠 시스템의 민감도 해석을 위한 개선된 모드법 (Modified Modal Methods for Sensitivity Analysis of Asymmetric Damped System)

  • 문영종;조지성;오주원;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.530-533
    • /
    • 2004
  • It is well known that many real systems have asymmetric mass, damping and stiffness matrices. In this case, the method for calculating eigenpair sensitivity is different from that of symmetric system. To determine the derivatives of the eigenpairs in asymmetric damped case, a modal method was recently developed by Adhikari. When a dynamic system has many degrees of freedom, only a few lower modes are available, and because the higher modes should be truncated to use the modal method, the errors may become significant. In this paper a procedure for determining the sensitivities of the eigenpairs of asymmetric damped system using a few lowest set of modes is proposed. Numerical examples show that proposed method achieves better calculating efficiency and highly accurate results when a few modes are used.

  • PDF

AN ASSESSMENT OF PARALLEL PRECONDITIONERS FOR THE INTERIOR SPARSE GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHODS ON AN IBM REGATTA MACHINE

  • Ma, Sang-Back;Jang, Ho-Jong
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.435-443
    • /
    • 2007
  • Computing the interior spectrum of large sparse generalized eigenvalue problems $Ax\;=\;{\lambda}Bx$, where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도 (Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies)

  • 최강민;고만기;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.117-124
    • /
    • 2001
  • A simplified method fur the eigenpair sensitivities of damped system with multiple eigenvalues is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with multiple natural frequencies. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compute an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m the number of multiplicity of multiple natural frequencies. The proposed method is an improved Lee and Jung's method which was developed previously. Two equations are used to find eigenvalue derivatives and eigenvector derivatives in Lee and Jung's method. A significant advantage of this approach over Lee and Jung's method is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To demonstrate the theory of the proposed method and its possibilities in the case of multiple eigenvalues, the finite element model of the cantilever beam and 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its height. and that of the 5-DOF mechanical system is a spring.

  • PDF