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ABSTRACT
This paper proposes new searching algorithm for the optimal PD gains of flexible rotor supported by active magnetic
bearings. Under the assumption of linearized bearing parameters with respect to PD gains, the performance index in
quadratic form is defined and steepest descent method is adopted for determining local minimum, Moreover, the eigenpair
sensitivity concept is utilized to evaluate the sensitivity of performance index. To evaluate the effectiveness of suggested
algorithm, the finite element model is constructed and its reduced model is retained in modal domain. Given starting gains,
the optimal gains are successfully found and the control performance is demonstrated by simulation to show the efficiency

of the proposed method.

1. INTRODUCTION

During last few decades, active magnetic bearing
(AMB) system has been drawing much attention for its
broad applicability to high speed rotating machinery
with non-contact support of a rotor. However, AMB has
inherent instability due to negative position stiffness so
that it needs feedback control, to render the controlled
system stable, based on augmented model of both
rotor’s structural dynamics and AMB’s electromagnetic
dynamics which includes levitation controller [1].

Even though many modem control methods, such as
Ho[2], p-synthesis[3] and so on, have been developed,
typical PD control method is largely accepted for stable
levitation controller of the rotor due to its simplicity and
easy physical interpretation. When we control the rigid
rotor-AMB system with PD controller, linear quadratic
regulation (LQR) approach has been already developed
well and can be applied successfully to determine
optimal PD gains [1]. However, in case of flexible rotor
of which some natural frequencies of flexible modes are
below a bandwidth of the closed loop system, the LQ
approach for PD gains determination has not been
accomplished yet.

The rotor-AMB system is usually supported by each
pair of upper and lower AMB in radial direction. It
means that boundary bearing condition of the rotor is
completely dependent on equivalent parameters as
stiffness and damping; they are analytically derived as
approximate linear functions of both P and D gains.
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Given bearing parameters and structural properties of
the rotor, finite element model [4] can be constructed
into exact description of whole system. However, the
large dimension of this FE model generally limit direct
use to control model, consequently reduced modal
model can be used alternatively for controller design.

With varying reduced modal model according to PD
gains, a given reduced model may not be valid anymore
after changing PD gains. It implies that a procedure to
obtain optimal PD gains in flexible rotor-AMB system
should consider the interaction between rotor shaft’s
dynamics and bearing parameters, equivalently PD
gains.

In this paper, to begin with, Simple modal model
reduction method is suggested by using H2 norm
evaluation. Next, sensitivity equation of eigenpair such
as eigenvalue and eigenvector with respect to PD gains
will be derived out which is used to approximate
closed-loop system dynamics in first order [5].
Performance index will be subsequently defined
similarly as that of conventional optimal control, and
used to search suboptimal PD gains satisfying necessary
condition for local minimum utilizing steepest descent
search method.

The proposed optimal control method is applied to the
flywheel system supported by AMBs in order to
simulate the control performance subjected to levitation
operation and impulse disturbances.

2. Reduced modal model of rotor-bearing
system and its eigenpair sensitivities

2.1 Finite element model and its reduced modal
model by use of H2 norm evaluation
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Typical rotor-AMB system can be modeled by finite
element analysis as the equation of motion of isotropic
rotor-AMB system can be described as [4]

M p+(C . +C, - jQG)p+(K, +K,)p=g (2-])
Where j and Q are the imaginary number and
rotational speed. M,,C,,G and K, (e CZN"ZN) are
the mass, structure damping, gyroscopic and structure
stiffness matrices, respectively. p=y+jzeC*! is
the complex coordinate vector of each nodes and
geC™ is external forcing vectors. Finally, C, and
K, (e CHN ) represent  equivalent  bearing
parameters as linear functions of each P and D control
gains.

The state space form of Eq. (2-1) is
AW=B,w+f (2-2)

where

0 M,
A, = ,
M, C, +C,-jQG

s v )bl

By solving self-adjoint eigenvalue problem of Eq. (2-2)
and its resulting modal transformation, modal equation
having 4N dof can be obtained as

{=A{+Bg, y=C{ 2-3)
where
A=diag{/1,” FLENY LI FN}
T
B= [ bl“lB blulF bluf o blu;N ] (2-4)
s2th quIF bzu: bzu;N

and C=B (¢ C**")

and §£={¢’," ¢k - {;N};) is a complex
modal state vector. Lower left subscripts denote nodes’
number at bearing positions. A and ¥ are eigenvalue
and modal input coefficient, ie. eigenvector,
respectively. Upper right superscripts B and F mean
backward and forward direction of modes. Lower right
subscripts mean corresponding mode number.

When the full modal model of the flexible rotor-AMB
system is reduced by the modal truncation, ‘cutting
frequency’ for mode selection is normally determined
by considering a bandwidth of controlled closed loop
system, physical disturbance condition and so on. Let
the reduced modal model be given by

Ca=At, +Beg, y=Cl, (2-5)

where right subscript R denotes reduced state or matrix.

Here, the error between full model and reduced model
may be the measure how close the reduction is
conducted from original model. In this study, H,-norm
concept are adopted for error evaluation.

For model error evaluation, at first, given system
matrices of Eq. (2-3) and (2-5), state space realizations
of both transfer functions H(s) (: C(sl-A)’ B) and
H, (s)(: C, (s1-A,)" B, ) are as follows:

- A|B
©=|cTe 2-6)
AR BR
H,(s)= {CR 0 ] @7
A state space realization of error system is
E(s)=H(s)-H,(s)
A 0 B
= 0 A; | B, 2-9)
cC -C,| 0O

Then, H,-norm reduction error can be expressed as:
[E@L, =[0e)-H, ()],
=tr[C,P,C; |
subject to A,P+PA; +B_.B; =0

(2-10)

where P, the solution of Lyapunov matrix equation, is
called as controllability grammian.

H,norm is commonly interpreted as the 2-norm of
output resulting from applying unit impulses to each
input channel. Therefore, this A, norm error, between
the original system and the reduced system, may
become an efficient index explaining how good the
approximation is.

2.2 Eigenpair sensitivity with respect to PD
control gains

The equation of motion of Eq. (2-1) can be re-written
like

Mp+Dp+Kp=¢g 2-11)

here M=M_,D=C_+C, - jQGand K=K_+K,.
Self-adjoint eigenvalue problem of Eq. (2.11) is
described in complex domain as
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|#'M+AD+K|=0
(A*M+iD+Kju=0
where ,1(.—. AEAr, .,AZBN) , u(=u,”,uf,.‘.,uf,,) are

cigenvalue set and modal vector set respectively,
Orthonormality condition may be satisfied as

(2-12)

v (2AM+D)u =1

v (PM-K)u=4 @1
In order to determine eigenvalue sensitivity, Eq. (2-13)
is differentiated with respect to all PD control gains
k,,m=pl, p2,dl,d2,in which pandd mean P and
D gain and 1 and 2 denote the first and the second
bearing. Subscript ,k, means derivative with respect
to k,.

(2AM +C)ui,_ +(A’M.,‘. +AD, +K, )u

(2-14)
+('M+AD+K)u, =0

Equation (2-14) is pre-multiplied byu”, and then it
results in

Ay, =u, (M, +iD, +K, )u (2-15)
However eigenvector sensitivity cannot be attained by
solving Eq. (2-15) due to singularity. Therefore, there
already exist many algorithms developed to get
cigenvector sensitivity, among which an algebraic
approach is utilized.
Rearranging Eq. (2-14), then we have

(A*M+aD+K)u, +(24AM+D)ud,

2-16
=-(AM, +iD, +K, )u @19

Differentiating normalization condition Eq. (2-13) with
respect to control gain &k, gives

u’ (2AM +D)u,,
=-0.5u" (24M,_+D, Ju

+u7Mul¢
" @-17)

Algebraic equation in two unknowns 4, andu, can
be formulated by combining Eq. (2-16) and (2- 17) as
following [5]

AM+AD+K (2AM+D)u | ju,
u’ (2AM +D) u"Mu A,
2-18
("M, +iD, +K, )u @-18)
0.50" (2AM,_+D, )u

By solving this simple algebraic equation, the
sensitivity of both eigenvalue and eigenvector can be

obtained simultaneously. Finally, eigenpair about
altered control gains may be approximated in first order
form like

A (ky +AK)= 4 (k)+2§;:' .km (2-19)
ul (k, +Ak) =, (k, )+ ak k, (2-20)
where £, ( k100K 20 R ygs Ky ) is nominal PD gains,
and Ak( Ak, Ok, , Ak, Ak, ) perturbed.

Considering equivalent bearing parameters with
respect to PD gains [2], Eq. (2-1) may be transformed to

Mp +(C,. - jQG +kk kK, )p

+(K+kk kK, Jp=¢g @2

Here, k,k,k and K, K, are current stiffness,
proximity sensor sensitivity, current amp gain and PD
gain matrix, respectively [2]. Matrix derivatives of Eq.
(2.21) with respect to gains are easily attained as

M, =0,C, =kkkK,, K, =kkkK,, (2-22)

Accordingly, Eq. (2-18) of eigenpair sensitivity is
reproduced like

AM+AD+K (2AM+D)u (8,
' (2AM+D)  u'Mu A

_ |(ap, +K, )u
- 0.50'D, u

3. Integrated structural and PD-control
optimization

(2-23)

3.1 Performance index for free vibration

To define a quadratic performance index for integrated
optimization, the PD control input u has to be defined
in modal domain such that

u{t) = xkk_p, (1) + xk p,(?)

3-1
= K(kpckg(t) + deRAllg(t)) G-

where

x=kkk

LA 2t 4

k, = diag{k,,.k,,},

P

k, =diag{k,,,k,,}
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and p, is the displacement state at bearing nodes. Next,
the performance index J, is defined in typical
quadratic form as

J,= r(y‘Sy+u'Tu) dt

(3-2)
= E(P;Slpb +P;S,p, + “.T“)dt
where Sand T are positive semi definite weighting
matrix and positive definite weighing matrix
respectively and the asterisk denotes a complex
conjugate. By inserting control input Eq. (3-1), above
equation becomes

J, = f{(P;Stpb +1325sz)
+(k,p, +K,B,) T(kppb+k,,pb)}dt (3-3)
= [oQ,
where
Q/ zQ/. +Q[z +Q;3
and Q, =C; (8, +K, TK, ) C,,
Q,, = A:C; (S, +KITK, )C,A,,
Q,, = C;K,TK,C,A, +A;C;K,TK,C,

Given the homogeneous system dynamics from Eq.
(2-5), optimal solution can be obtained by minimizing
performance index J, If all eigenvalues in this
deterministic system are located in the lefi-half plane,

then the above performance index, using trace identity,
can be converted as

J, =tr [szo] (3-4)
where  Z, = E{t(0)5"(0)] and E{{(0)} =0 and P,
satisfies following Lyapunov matrix equation

AP +P A +Q, =0 (3-5)
Note that P/ and Q. are also dependent on control
gain %, .

The sign of sensitivity of the performance index
indicates the direction from which the controller gain
should be altered from current one to render the above
index smaller. Making use of the formulas

8 .. — T

EEW[NZ ]=N,u[Nz]=t[Z"N"] (3-6)
the variation of performance index Eq. (3-4) can be
derived as

aJ P
L= tr[-—-f-Zu +P ?-Z-‘l-) (3-7

ok, ok, 7 ok,

From the sensitivity Eq. (3-7), it is noted that the

covariance matrix Z, is already given but the
sensitivity of P, is not. Therefore, this unknown
sensitivity of P, should be given by differentiating
Lyapunov Eq. (3-5) like

oA, op, oP,

oA, 0Q
AP AL L A
ok, ' "ok, ok,

L=0(3-8
+’6k,,, ok @-8)

m

Rearranging above Eq. (3-8) makes new Lyapunov
equation in which a solution is the sensitivity of P,

, 0P, 0P,
Ap o i A
ok, Ok,

. 3-9
+ iéﬁ. Pf + Pf _aé.!f. + iQ.i. = ()
o, o ok,

Performance index Eq. (3-4) and its sensitivity Eq. (3.9)
is used later to find optimal control gains in next
section.

3.2 Optimal PD gain determination utilizing
steepest decent method

The AMB system is commonly controlled and
stabilized by PD controller; therefore it is important to
find optimal control gains. Two characteristic features
of flexible rotor-AMB system, i.e. varying dynamics
due to gyroscopic effect and unavoidable unbalance
response, may yield the optimal gains with respect to
rotational speed. Although gain-scheduling approach,
“try and error’ in many cases, is commonly adopted, it
lacks physical and analytical ground.

For the flexible rotor-AMB system, optimal gains
should consider dynamics of flexible modes. At a
certain rotational speed, constant reduced modal-state
equation obtained by the truncation can be constructed
for control model; however this model does not consider
gain-dependency of the system dynamics. Accordingly,
even though the PD gains are determined by proper
optimal control algorithm, those may be not optimal
solution,

In this section, 1 will present new way to determine PD
gains optimally. Proposed optimization procedure
reflects the gain-dependency of the dynamics by first
order approximation derived at last sections.
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Fig. 1 Perspective view of the AMB system

If there is a constraint equation like homogenous part
of Eq. (2-5) with performance index, it is common to
introduce Lagrange multiplier and use matrix minimum
principle for necessary condition of local minimum.
However, due to gain-dependent dynamics, such
approach cannot be applied so that direct search method

by evaluating performance index and its sensitivities, i.e.

steepest decent method, is chosen.
The gradients about P and D gains are expressed as

&, aJ,
VJ (k)= —L
ok, ok,

(3-10)
_ [ﬂ T }
ok, Ok, ok, Ok,
where k=[k, k, k, k]
The necessary condition for local minimum gain is

VI (k)=0 (3-10)

Finally, optimal gains are given as
k,, =minJ, (3-10)

The optimization procedure can be stated as:

1. Select a starting PD gains and weightings 8§, ,S,
and T. Set iteration index i=0.

2. Compute J (i)and its gradients of VJ (k (7))
and VJ (kK ().
Stop if ’[J, OG-/, -D] <z
Otherwise, define a direction vector of
d, ()= -VJ(k, (), 4, () = -VJ(k, ()

3. Determine ‘small enough’ step size a,and «,.
Update k,(i+1) =k, ()+a,d,()
and kK, (i+D) =K, {{)+a,d, ()

4, Seti=itl, k ())=k, ((+1).k,()=k,(i+1)and
go to step 2.

Fig. 2 Finite element model of the system

4. Simulation Results and Discussion

To investigate effectiveness of the proposed control
algorithm by simulation, the rotor-AMB system shown
in Fig.1 is established, which consists of a flexible rotor,
two magnetic bearings, four proximity probes, a digital
controller and current power amplifiers. Maximum
Operational speed is designed to reach 20000rpm. For
simulation, the sensor, the power amplifier is described
as constant sensitivities & (=50007/) and k. (24,).

Linearizing the magnetic force f(z) w.r.t the neutral
position, the net magnetic force due to small
perturbation y(¢) in air gap can be expressed by

SO = ki) +k,y() (-1

where the current and position stiffnesses & (= 52.3%))
and k,(=-0.13%,) imply the sensitivities of
magnetic force relative to the control current i(f) and
the shaft displacement y(r), respectively. The position
stiffness has a negative value which becomes a cause of
instability in magnetically suspended system.

For the finite element analysis, the rotor is divided into
21 one-axis Rayleigh’s beam elements and lumped disk
elements like Fig. 2; furthermore the magnetic bearings
are assumed as pin-point stiffness and damping
elements located at nodes. In spite of non-collocated
sensors’ position with the actuators, it is ignored and
collocation assumption actually holds instead. The PD
controller is designed to be as decentralized so that
diagonal bearing damping and stiffness matrices in

Table 1 Specifications of the AMB system

Shaft
Length(m) 0.6
Radius(m) 0.02
Density(kg/m’) 7800
Young’s modulus(N/m?) | 2.07x 10"
Disks
Mass Polar Diametral
No. moment moment
kg) (kg-m?) (kg-m’)
Foraxial AMB | 0.74 | 92%10% | 4.7x10"
Flywheel 471 | 1.5%10% | 79%10°
| Magnet Journal
Length(m) | 0.048
Radius(m) | 0.025

- 740 -




BBTE e s e o
r

1.37*
1.3651__—___/
i

B s
!

!
|
1.385/;

0.5 1 1.5 2
Rotational Speed(rpm) x10*
Fig.3 H,norm model reduction error

Dt § —~—Original
40,60 ol — — Linearized

Real(eigenvalue)

0,02 -0.01 0.00 0.01 0.02
P1 gain variation

Fig. 4 Eigenvalue approximation of
1B mode when k;=0.4, k;=0.001

FEM model are used. The specifications of the system
are listed in Table 1.

The rigid rotor-AMB system is designed to place
rotor’s mass center possibly in the middle of two
magnetic bearings. With rigidity of the rotor, it enables
respective control gains for two bearings to be regulated
equally. However, since the mass center of the system
deviates from the middle of the bearings as shown in
Fig. 2, the control gains at two positions may not be
equal if we try to optimize them. Before optimization
work, the starting PD gains are determined equally for
two bearings as &, =k,, =04 and k, =k, =0.00!
whereby finite element model is established and 10
modes from 5™ backward to 5" forward are truncated
after modal analysis. Resulting H, norm error, Eq.
(2-10), is shown by Fig. 3 from which we find it to be
around 1 % relative to that of full model. Moreover,
Figure 4 denotes a representative result of eigenpair
approximation, Eq. (2-23), about upper bearing’s P gain
k,, of which condition is given by starting gains at
rotational speed S000rpm. A series of tests based on
other conditions are performed, which conform that the
error is negligibly small like Fig. 4.

Before carrying out optimization, the requiring
parameters are listed as follows: S, = diag{2,10}x10°,
S, =diag{10,50} , T =diag{0.2,1}x10™ , £, =0.001 ,
@,=70x10" and a, =5.0x10". The performance
index converges after 22 iterations and Fig. 5 shows its
converging feature. Optimal P gains corresponding to
22 iterations are determined by

Kpop =[Kpiop  Kyr0p | =[0.55 0.62] 4-2)

0.095¢

— ]
e Performance Indcx;'
0.09

0.085
0.08
0.075
Q.07

0.065

0.060 10 20 30 40 50

Iteration

Fig. 5 Performance index convergence
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Fig. 6 P-gain convergence
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Fig. 7 D-gain convergence

Respanse(uny
[P Y
[=] Q
(=] o

-400 ~—— By Initial Gains

wown By Optimal Gains
o 0.02 0.04 0.06 0.08 0.1
Time(s)

Fig. 8 Control response at bearing 1
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Fig. 9 Control response at bearing 2

~500,

Kiop =[Kiop Kirop |=[0.0018 0.0019]  (4-3)

It is noted that the gains of bearing 2 are larger than
one of bearing 1. Finally, we can find the control
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response become faster and less fluctuating on Fig. 8
and 9.

5. Conclusions

In this paper, the simultaneous optimization method of
PD controller is proposed considering the structural
dynamics of flexible rotor-AMB system. Under the
assumption of linearized force equation relative to
neutral rotor’s position, the equivalent bearing
parameters w.r.t PD gains are determined whereby the
reduced modal model is obtained from finite element
model. Since the modal properties of the flexible
rotor-AMB system are varied with gains, the eigenpair
sensitivity approach is adopted to find local minimum of
the performance index defined in quadratic form.

Given starting PD gains, suggested search algorithm
for optimization, steepest descent method, find the
optimal PD gains successfully. The control performance
for optimal gains is shown to become better than that of
starting. Reminding the bearing 2 is closer to the mass
center than the bearing 1, it is physically acceptable to
have larger optimal gains for bearing 2. Therefore, this
suggest algorithm can be used effectively in searching
optimal gains of the flexible rotor-AMB system.
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