• Title/Summary/Keyword: Eigen-space beamforming

Search Result 10, Processing Time 0.746 seconds

Reduced Rank Eigen-Space Beamforming for Adaptive Array Systems (적응형 배열 안테나를 위한 감소 차수 고유 공간 빔형성 알고리즘)

  • Hyeon, Seung-Heon;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.336-341
    • /
    • 2008
  • In this paper, beamforming algorithm is proposed which can obtain diversity gain in beamforming system that deploy antenna elements with half-wavelength. The proposed algorithm provides beam-pattern using eigen-vectors that span received signal subspace. The criterion to decide optimal rank of eigen-space used for beamforming is also proposed. A beamforming system applied the proposed algorithm shows better performance with diversity gain as getting larger angle spread. This paper provides a description of proposed algorithm with analysis of the performance using various computer simulations.

Block-Ordered Layered Detector for MIMO-STBC Combined with Transmit and Receive Eigen-Beamformers (MIMO-STBC를 위한 송수신 고유빔 형성기를 이용한 블록순 계층적 검파기)

  • 이원철;김홍철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.17-26
    • /
    • 2004
  • This paper proposes JBSTBC (Joint Beamforming Space-Time Block Coding) scheme for MIMO (Multi-Input Multi-Output) communication systems. To enhance the order of spatial diversity in presence of deteriorative fading correlations as well as inter-substream interferences, the proposed JBSTBC method employs joint eigen-beamforming technique together with the BOLD (block-ordered layered detector) for MIMO-STBC. In order to confirm superiority of the proposed JBSTBC method, the computer simulations are conducted in highly correlated fading situations with providing detailed mathematical derivations for clarifying functionality of the proposed scheme.

TEBS Technique with Using STBC for MISO Systems

  • Kim, Hong-Cheol;Park, Jae-Hyung;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.140-145
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC)[1,2] employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role of utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channels conditioned with varying the degree of their correlations. The result indicates that our proposed scheme is good performance in spatially correlated channel.

Transmit Eigen-Beamformer with Space-Time Block Code for MISO Wireless Communication Systems

  • Kim, Hong-Cheol;Park, jae-Hyung;Yoan Shin;Lee, Won-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1932-1935
    • /
    • 2002
  • This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC) 〔1,2〕employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role f utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channel conditioned with varying the degree of their correlations. The result indicates hat our proposed scheme is good performance in spatially correlated channel.

  • PDF

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

The Interference Nulling using Weighted Precoding in the MIMO Cognitive Radio System (다중 안테나를 사용하는 인지무선 시스템에서 가중치 precoder를 통한 간섭 제거 기법)

  • Lee, Seon-yeong;Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.768-776
    • /
    • 2010
  • In this paper, we consider a linear precoding for the effective spectrum sharing in multiple-input multiple-output (MIMO) cognitive radio system where a secondary user coexists with primary users. The secondary user employs the orthogonal space time block coding (OSTBC) at the transmitter. Assuming a flat fading channel and a maximum-likelihood receiver, the optimum precoder forces transmission referred to as eigen-beamforming. In this paper, to eliminate the interference, ZF criterion based eigen-beamforming is not only used but also the precoding weight is chosen to cancel the remaining interference. This weight is computed by vector's likelihood. Simulation results show stronger interference suppression capability, better SER performance, and higher capacity than the algorithm in [4].

AT-DMB Reception Method with Eigen-space Beamforming Algorithm (고유 공간 빔형성 알고리즘을 이용한 AT-DMB 수신 방법)

  • Lee, Jae-Hong;Choi, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • AT-DMB system has been developed to increase data rate up to double of conventional T-DMB in the same bandwidth while maintaining backward compatibility. The AT-DMB system adopted hierarchical modulation which adds BPSK or QPSK signal as enhancement layer to existing DQPSK signal. The enhancement layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of conventional T-DMB service coverage. But this causes the enhancement layer signal of AT-DMB susceptible to fading effect in transmission channel. A turbo code which has improved error correction capability than convolutional code, is applied to the enhancement layer signal of the AT-DMB system for compensating channel distortion. However there is a need for other solutions for better reception of AT-DMB signal in receiver side without increasing transmitting power. In this paper, we propose adaptive array antenna system with Eigen-space beamforming algorithm which benefits beamforming gain along with diversity gain. We analyzed the reception performances of AT-DMB system in indoor and mobile environments when this new smart antenna system and algorithm is introduced. The computer simulation results are presented along with analysis comments.

Beamforming Algorithm for Smart Antenna System in Multi-mode Environment (다중 모드 지원이 가능한 스마트 안테나 시스템의 빔형성 알고리즘)

  • Ahn, Sung-Soo;Kim, Min-Soo
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.42-49
    • /
    • 2008
  • This paper proposes a new beamforming algorithm to select beamforming gain or/and diversity gain in CDMA2000, W-CDMA, W-LAN channel according to signal environment on the multipath. In this paper, we present the criteria to obtain deversity gain at any point that based on quantized experimental value. Proposed method proposes represents a performance better than conventional algorithm adopting the largest two eigenvector when angle spread is exit. From the results of performance analysis through various simulation, it is confirmed that proposed method is far superior about $3{\sim}4$ times compare to conventional method in signal environment.

Gradient On-Off Beamforming Algorithm Based On Eigen-Space Method For a Smart Antenna In IS-2000 1X Signal Environment (IS-2000 1X 신호 환경하에서의 고유공간 방법에 근간한 그래디언트 온-오프 빔평성 알고리즘)

  • 이정자;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.949-957
    • /
    • 2003
  • This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.

Adaptive Beamforming Technique of Eigen-space Smart Antenna System (고유공간 스마트 안테나 시스템의 적응 빔형성 기술)

  • 김민수;이원철;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.989-997
    • /
    • 2002
  • This paper presents a new technique that enhances the performance of the smart antenna system especially in signal environments of wide angular spread by adopting a weight vector obtained from two eigenvectors of theautocovariance matrix of the received data. While the conventional beamformingtechnique employs only one eigenvector corresponding to the largest eigenvalue, the proposed algorithm uses two eigenvectors corresponding to the largest and second largest eigenvalue in such a way that it can be robust enough to the signal environments of wide angular spread. An efficient adaptive procedure is shown to verify that the optimal weight vector consisting of the two eigenvectors is obtained with a reasonable complexity(3.5$N_2$+ 12N) and accuracy. it is also shown in this paper that the numerical results obtained from the proposed adaptive procedure well agree with those obtained from a commercial tool computing the eigen-function of MATLABTM.