• 제목/요약/키워드: Egyptian code

검색결과 12건 처리시간 0.022초

Study of wind tunnel test results of high-rise buildings compared to different design codes

  • Badri, Abdulmonem A.;Hussein, Manar M.;Attia, Walid A.
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.623-642
    • /
    • 2015
  • Several international codes have been developed for evaluating wind loads on structures; however, the wind structure interaction could not be accurately captured by these codes due to the gusty nature of wind and the dynamic behavior of structures. Therefore, the alternative wind tunnel testing was introduced. In this study, an introduction to the available approaches for wind load calculations for tall buildings was presented. Then, a comparative study between different codes: the Egyptian code, ECP 201-08, ASCE 7-05, BS 6399-2, and wind tunnel test results was conducted. An investigation has been carried out on two case studies tall buildings located within the Arabian Gulf region. Numerical models using (ETABS) software were produced to obtain the relation between codes analytical values and wind tunnel experimental test results for wind loads in the along and across wind directions. Results for the main structural responses including stories forces, shears, overturning moments, lateral displacements, and drifts were presented graphically in order to give clear comparison between the studied methods. The conclusions and recommendations for future works obtained from this research are finally presented to help improving Egyptian code provisions and show limitations for different cases.

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky ;Muhammad S. Mansy;A.A. El-Sadek ;Yousif M. Mousa ;Yasser T. Mohamed
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.238-247
    • /
    • 2023
  • The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide

  • Alzamly, Mohamed A.;Aziz, Moustafa;Badawi, Alya A.;Gabal, Hanaa Abou;Gadallah, Abdel Rraouf A.
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.674-680
    • /
    • 2020
  • We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found.

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • 제87권4호
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Modeling and characterization of beryllium reflector elements under irradiation conditions

  • Ahmed H. Elhefnawy;Mohamed A. Gaheen;Hanaa H. Abou Gabal;Mohamed E. Nagy
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4583-4590
    • /
    • 2023
  • This study aims at modeling the beryllium reflector poisoning under neutron irradiation conditions and calculating the impact of beryllium poisoning on the core parameters of ETRR-2 research reactor. The CITVAP code was used to calculate the neutron flux and parameters of ETRR-2 core with beryllium reflector elements. The neutron flux in each reflector element was calculated to solve the modeling equations for the atomic densities of lithium-6 (6Li), tritium-3 (3H), and helium-3 (3He) using the BERYL program. The results are discussed based on CITVAP calculations of the core excess reactivity and cycle length Full Power Days (FPD). Possible solutions to minimize the degradation due to beryllium poisoning are also discussed and compared based on calculations.

Original Identifier Code for Patient Information Security

  • Ahmed Nagm;Mohammed Safy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.141-148
    • /
    • 2023
  • During the medical data transmissions, the protection of the patient information is vital. Hence this work proposes a spatial domain watermarking algorithm that enhances the data payload (capacity) while maintaining the authentication and data hiding. The code is distributed at every pixel of the digital image and not only in the regions of non-interest pixels. But the image details are still preserved. The performance of the proposed algorithm is evaluated using several performance measures such as the mean square error (MSE), the mean absolute error (MAE), and the peak signal to noise Ratio (PSNR), the universal image quality index (UIQI) and the structural similarity index (SSIM).

Structural design of steel fibre reinforced concrete in-filled steel circular columns

  • Eltobgy, Hanan H.
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.267-282
    • /
    • 2013
  • This paper presents the behavior and design of axially loaded normal and steel fiber reinforced concrete in-filled steel tube (SFRCFT) columns, to examine the contribution of steel fibers on the compressive strength of the composite columns. Non-linear finite element analysis model (FEA) using ANSYS software has been developed and used in the analysis. The confinement effect provided by the steel tube is considered in the analysis. Comparisons of the analytical model results, along with other available experimental outputs from literature have been done to verify the structural model. The compressive strength and stiffness of SFRC composite columns were discussed, and the interpretation of the FEA model results has indicated that, the use of SFRC as infill material has a considerable effect on the strength and stiffness of the composite column. The analytical model results were compared with the existing design methods of composite columns - (EC4, AISC/LRFD and the Egyptian code of Practice for Steel Construction, ECPSC/LRFD). The comparison indicated that, the results of the FEA model were evaluated to an acceptable limit of accuracy. The code design equations were modified to introduce the steel fiber effect and compared with the results of the FEA model for verification.

Seismic force reduction factor for steel moment resisting frames with supplemental viscous dampers

  • Serror, M. Hassanien;Diab, R. Adel;Mourad, S. Ahmed
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1171-1186
    • /
    • 2014
  • Damping is one of the parameters that control the performance of structures when they are subjected to seismic, wind, blast or other transient shock and vibration disturbances. By adding supplemental viscous dampers, the energy input from a transient deformation is absorbed, not only by the structure itself, but also by the supplemental dampers. The aim of this study is to evaluate the values of both damping and ductility reduction factors for steel moment resisting frames with supplemental linear viscous dampers. Two-dimensional finite element models have been established for a range of low to mid rise buildings with different parameters: number of floors; number of bays; and number of dampers with different supplemental damping ratios (from 5% to 30%). A parametric study has been performed using time history analyses and a well-documented research method (N2-method). In addition, an equation has been proposed for each reduction factor based on regression analysis for the obtained results. The results of the Time history analyses are compared with those of a modified N2-method. Moreover, a comparison with values specified in the European code EC8 and the Egyptian code ECP-201 has been performed.

Evaluation of required seismic gap between adjacent buildings in relation to the Egyptian Code

  • Hussein, Manar M.;Mostafa, Ahmed A.;Attia, Walid A.
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.219-230
    • /
    • 2021
  • International seismic codes stipulate that adjacent buildings should be separated by a specified minimum distance, otherwise the pounding effect should be considered in the design. Recent researches proposed an alternative method (Double Difference Combination Rule) to estimate seismic gap between structures, as this method considers the cross relation of adjacent buildings behavior during earthquakes. Four different criteria were used to calculate the minimum separation distance using this method and results are compared to the international codes for five separation cases. These cases used four case study buildings classified by different heights, lateral load resisting systems and fundamental periods of vibrations to assess the consistency in results for the alternative methods. Non-linear analysis was performed to calculate the inelastic displacements of the four buildings, and the results were used to evaluate the relation between elastic and inelastic displacements due to the ductility of structural elements resisting seismic loads. A verification analysis was conducted to guarantee that the separation distance calculated is sufficient to avoid pounding. Results shows that the use of two out of the four studied methods yields separation distances smaller than that calculated by the code specified equations without under-estimating the minimum separation distance required to avoid pounding.

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes

  • Divyah, N.;Prakash, R.;Srividhya, S.;Sivakumar, A.
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.387-400
    • /
    • 2022
  • The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.