• Title/Summary/Keyword: Effluent-dominated stream

Search Result 7, Processing Time 0.022 seconds

A Test of Two Models for the Bacteria Flux across the Sediment/Water Interface in an Effluent-dominated Stream (하수처리 방류 소하천내 퇴적물로부터의 박테리아 유출 플럭스모델 비교)

  • Ahn, Jong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • Treated sewage could enable growth by providing key nutrients or seeding the sediments with enterococci strains that can grow in the environment. This study is to test the hypothesis that the flux of bacteria into the water column is rate-limited by the transfer of bacteria across the sediment/water interface. Two conceptual models are derived for the transfer of bacteria to the water column from the sediment/water interface: convective diffusion of isolated bacteria and resuspension of particle-associated bacteria. The model predictions are directly tested together with field measurements of bacteria and sediment in an effluent-dominated stream where high concentrations of enterococci in this stream originate primarily from growth of the bacteria in stream sediments. The results reveal that high concentrations of enterococci in this stream are transported primarily by resuspension of particle-associated bacteria accumulated at the sediment/water interface, either in the form of bacterial aggregates or in the form of inorganic particles.

A Study on Water Environment and Benthic Macroinvertebrate Community in Reclaimed Wastewater Effluent Dominated Stream (하수처리수 방류 하천의 물환경과 저서성 대형무척추동물 군집 생태 연구)

  • Son, Jung-Won;Kwag, Jin-Suk;Cho, Gab-Je;Ryou, Dong-Choon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.190-203
    • /
    • 2021
  • Water quality, benthic macroinvertebrate communities, and other factors were investigated to explore the effects of the effluent discharge from a sewage treatment plant into Jwagwang stream in Busan in 2019. During the study period, the flow rate of this stream was in the range of 10,400 m3/day to 52,200 m3/day except for the discharge of about 24,000 m3/day of the effluent. After discharge, the flow velocity increased by about 65% and the water depth increased by about 40%. At sites downstream of the discharge point, BOD, COD, TOC, T-N, T-P, and other water quality values were worse than those of the upstream sites. The periphytic algal chlorophyll-a concentrations in the natural substrata were higher than those of the upstream sites, especially in May and August. However, at sites downstream of the discharge point, the individual numbers of Annelida were decreased and individual numbers of the insecta of arthropoda were increased. Also, species numbers and the diversity and dominance indexes were improved in the sites downstream of the discharge point. The functional feeding groups (FFGs) of collector-filterers were increased and the habitat orientation groups (HOGs) of sprawlers, burrowers, and clingers were especially increased at the sites with additional reclaimed wastewater effluent flow. Regardless of the effluent discharge, BMI, an indicator of ecological stream health using benthic macroinvertebrate species, did not show large gaps between the study points. Although the water quality of the sites downstream of the discharge point was much worse than those upstream, their ecosystem soundness was better than those of the upstream sites from an ecological perspective.

하수처리장 방류수에 용존된 무기화학종의 연속계측자료를 이용한 하천유량, 유속 및 방류량 추적

  • Kim, Gang-Ju;Han, Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • Various Parameters such as stream velocities, discharges, and dispersion coefficients of dissolved solutes were estimated by fitting 1-D nonreactive solute transport model to the time-series chemistry data. This study was done for the reaches of Mankyung River lower than the Jeonju Wastewater Treatment Plant (Jeonju WTP). Korea. Concentrations of inorganic chemicals in the stream waters are strongly influenced by mixing with the chemically distinct effluent from Jeonju WTP. Sulfate, EC. and the total major cation were proved to be nearly conservative in the study area front their relationships with chloride, the conservative chemical species. The solute transport model was constrained to the time-series concentrations for these 4 conservative species. The variations of concentration and discharge of Jeonju WTP were used as input parameters, and the stream velocities, dispersion coefficients, and concentrations and discharges of some inflows were optimized. The differences between the observed arid simulated values for alkalinities and nitrates are inversely correlated and show diurnal fluctuations, indicating the photosynthesis. The parameters obtained front this mode] range from 550 to 774 kcmd (stream discharge at the outlet of the study area), from 0.06 to 0.10 m/sec (flow velocity), and from 0.7 to 6.4 m$^2$/sec (dispersion coefficient). The history of Jeonju WTP discharge was well predicted when optimized, indicating the validity of the model results.

  • PDF

Contamination of Stream and Reservoir Waters with Arsenic from Abandoned Gold Mine

  • Lee, Jin-Yong;Kim, Hee-Joung;Yang, Jai-E.
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • Levels of arsenic in stream and reservoir waters affected by an abandoned gold mine were examined. The abandoned mine has been left without proper civil and remedial works preventing potential environmental hazards. Field and laboratory chemical analyses revealed that the stream waters downgradient from the mine area were severely contaminated with arsenic and furthermore the reservoir water, 2-3 km away from the mine, also contained substantial levels of As, far exceeding the Korean stream water standard. Relatively higher pH values (6.5-9.4) enhanced mobility of As and mainly sustained substantial As concentration in waters. Chemistries of the stream water, groundwater and reservoir water were dominated by two main factors including effects of mine effluent and anthropogenic agricultural activities. Considering that there has been a substantial As input to the reservoir and the reservoir water has been used for agricultural and domestic uses, immediate remedial works are essentially required.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

A Study on Comparison of Changes in Ecological Characteristics for Bulgwangcheon(stream) Close-to Nature Section (불광천 자연형 하천 정비구간의 생태적 특성 변화 비교 연구)

  • Park, Won-Zei;Lee, Kyong-Jae;Han, Bong-Ho;Jang, Jae-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.112-129
    • /
    • 2012
  • The aim of this study was to provide basic data in managing the project that was carried out on Bulgwangcheon in a nature-friendly way to improve the conditions around the areas, which was brought to completion in 2002, based on changes in ecological characteristics. For this propose, this study examined documents related to the project, compared physical and enviromnental changes before and after the project was conducted and analyzed changes in the stream ecosystem. The result showed that in areas that effluent water was often observed, especially when it rained, the river wall was washed away and vegetation was found damaged. As for actual vegetation, this study compared planting coverage of each section of the research area and actual vegetation charts. The results indicated that Lespedeza spp., Aster koraiensis among mixed seeds that were planted in the reservoir path were almost swept away while Festuca arundinacea dominated the areas. Phragmites communis, Miscanthus sacchariflorns and Salix gracilistyla which had been planted in a small number were also almost washed out though a small number of them were left to form a colony. After examining the topography and structure of the plant community, this study found that areas where mixed seed were planted had changed into two types of vegetation: First type of area is dominated by P and R which are usually raised in apron with abundant floating particles. The second type of area is dominated by dry gramineous plant such as F and A. Areas around low flow channel where Phragmites communis, Miscanthus sacchariflorus and Salix gracilistyla planting construction method is applied was washed away with the width of low flow channel reduced. Though P, M and S formed a small community in some areas around the low flow area, they were in small number and in composition of simple plant species. Two ways were suggested in this study to manage the stream in an ecological way. First, adequate revetment construction methods should be applied by monitoring the flow of the stream as well as considering the flood control of urban streams. Second, target vegetation communities that are suitable for the environment of the stream should be chosen and be plantedconstantly with high density. At the same time, ornamental native plants shouldn't be planted as they have been and disturbing vegetation should be removed.

The Effects of Thermal Discharge on Benthic Macroinvertebrate Communities Structure in Buso Stream (온배수 유입이 부소천의 저서성 대형무척추동물 군집구조에 미치는 영향)

  • Han, Jung Soo;Wang, Joo Hyun;Kim, Jeong Eun;Jung, Jin Ho;Bae, Yeon Jae;Choi, Jun Kil;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.83-94
    • /
    • 2017
  • Benthic macroinvertebrates were investigated in thermal discharge that flows Buso stream region from December 2015 to February 2016, Korea. Study site was selected for the upstream, downstream relative to the mixing station and mixing station which thermal effluent flows, water quality analysis and benthic macroinvertebrates composition, taxa of EPT-group individuals, analysis of biological water quality. As a result, a total of 4,015 individuals including 50 species, 30 families, 11 orders, 4 classes, and 3 phyla were recognized. Taxa of species is Ephemeroptera 16 species (32.0%) including 6 families, the density composition was highest in 1,848 individuals (46.03%) Diptera. EPT-group occupied during the study period were a total of 1,876 individuals (46.72%) including 32 species and 17 family, lowest in the mixing station for study period. As a results of community analysis, mixing station in the Limnodrilus gotoi and Chironomidae sp.2, which is dominated by the analysis was Ecdyonurus levis, Cincticostella levanidovae, Nemoura KUa. The dominant species showed a difference in the upstream and downstream. In the functional feeding groups, in the upstream and mixing station Gathering-Collectors, downstream it was analyzed that the ratio of the highest Filtering-Collectors and decreased the ratio of Shredders increasing from upstream to downstream. Habitat orientation group is analyzed that accounted for most of the Clingers and Burrowers, from upstream to downstream toward the higher the ratio of Clingers. Biological water quality assessment results were analyzed the worst state in the mixing station with an average 2.73 (${\pm}0.41$). Correspondence analysis, correlation analysis results of water temperature and the cold-water species, as the water temperature increases were analyzed by reducing cold-water species and EPT-group.