A Test of Two Models for the Bacteria Flux across the Sediment/Water Interface in an Effluent-dominated Stream

하수처리 방류 소하천내 퇴적물로부터의 박테리아 유출 플럭스모델 비교

  • 안종호 (한국환경정책평가연구원 물순환연구실)
  • Received : 2009.10.19
  • Accepted : 2010.03.26
  • Published : 2010.04.15

Abstract

Treated sewage could enable growth by providing key nutrients or seeding the sediments with enterococci strains that can grow in the environment. This study is to test the hypothesis that the flux of bacteria into the water column is rate-limited by the transfer of bacteria across the sediment/water interface. Two conceptual models are derived for the transfer of bacteria to the water column from the sediment/water interface: convective diffusion of isolated bacteria and resuspension of particle-associated bacteria. The model predictions are directly tested together with field measurements of bacteria and sediment in an effluent-dominated stream where high concentrations of enterococci in this stream originate primarily from growth of the bacteria in stream sediments. The results reveal that high concentrations of enterococci in this stream are transported primarily by resuspension of particle-associated bacteria accumulated at the sediment/water interface, either in the form of bacterial aggregates or in the form of inorganic particles.

Keywords

References

  1. Agrawal, Y. C., Pottsmith, H. C. (1994) Laser diffraction particle sizing in STRESS, Cont. Shelf Res., 14(10-11), pp.1101-1109. https://doi.org/10.1016/0278-4343(94)90030-2
  2. Agrawal, Y. C., Pottsmith, H. C. (2000) Instrument for particle size and settling velocity observation in sediment transport, Mar. Geo., 168(1-4), pp.89-114. https://doi.org/10.1016/S0025-3227(00)00044-X
  3. Auer, M. T., Niehaus, S. L. (1993) Modeling fecal coliform bacteria - I. Field and laboratory determination of loss kinetics, Wat. Res., 27(4), pp.693-701. https://doi.org/10.1016/0043-1354(93)90179-L
  4. Bourbeau, P., Dicker, D., Higgins, M. L., Daneomoore, L. (1989) Effect of cell-cycle stages on the central density of enterococcus-faecium ATCC 9790, J. of Bacteriology, 171(4), pp.1982-1986.
  5. Craig, D. L., Fallowfield, H. J., Cromar, N. J. (2002) Enumeration of faecal coliforms from recreational coastal sites: evaluation of techniques for the separation of bacteria from sediments, Journal of Applied Microbiology, 93(4), pp.557-565. https://doi.org/10.1046/j.1365-2672.2002.01730.x
  6. Domingo, J. W. S., Bambic, D. G., Edge, T. A., Wuertz, S. (2007) Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution, Water Research, 41(16), pp.3539-3552. https://doi.org/10.1016/j.watres.2007.06.001
  7. Edberg, S. C., Allen, M. J., Smith, D. B. (1988) National field evaluation of a defined substrate method for the simultaneous enumeration of total coliforms and Escherichia colifrom drinking water: comparison with the standard multiple tube fermentation method, Appl. Environ. Microbiol., 54(6), pp.1595-1601.
  8. Fischer, H. B., List, J.E., Koh, C. R., Imberger, J., Brooks, N. H. (1979) Mixing in inland and coastal waters. Academic Press Inc., New York.
  9. Jamieson, R., Joy, D.M., Lee, H., Kostaschuk, R., Gordon, R. (2005) Transport and deposition of sedimentassociated Escherichia coli in natural streams, Water Res., 39(12), pp.2665-2675. https://doi.org/10.1016/j.watres.2005.04.040
  10. Kay, D., Edwards, A. C., Ferrier, R. C., Francis, C., Kay, C., Rushby, L., Watkins, J., McDonald, A. T.,Wyer, M., Crowther, J., Wilkinson, J. (2007) Catchment microbial dynamics: the emergence of a research agenda, Progress in Physical Geography, 31(1), pp.59-76. https://doi.org/10.1177/0309133307073882
  11. Novotny, V. (2003) Water quality: diffuse pollution and watershed management. J. Wiley & Sons, New York, New York.
  12. Simpson, J. M., Santo Domingo, J. W., Reasoner, D. J. (2002) Microbial source tracking: state of the science, Environ. Sci. Technol., 36(24), pp.5279-5288. https://doi.org/10.1021/es026000b
  13. Steets, B. M., Holden, P. A. (2003) A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon, Water Res., 37(3), pp.589-608. https://doi.org/10.1016/S0043-1354(02)00312-3
  14. Paul, S., Haan, P. K., Matlock, M. D., Mukhtar, S., Pillai, S. D. (2004) Analysis of the HSPF water quality parameter uncertainty in predicting peak in-stream fecal coliform concentrations, Transactions ASAE, 47(1), pp.69-78.
  15. Uchrin, C. G., Weber, W. J. (1981) Modeling suspended solids and bacteria in Ford Lake, J. Environ. Eng., 107(5), pp.975-993.
  16. Whitman, R. L., Shively, D. A., Pawlik, H., Nevers, M. B., Byappanahalli, M. N. (2003) Occurrence of Escherichia coliand enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan, Applied and Environmental Microbiology, 69(8), pp.4714-4719. https://doi.org/10.1128/AEM.69.8.4714-4719.2003
  17. Wilkinson, J., Kay, D., Wyer, M., Jenkins, A. (2006) Processes driving the episodic flux of faecal indicator organisms in streams impacting on recreational and shellfish harvesting waters, Water Res., 40, pp.153-161. https://doi.org/10.1016/j.watres.2005.11.001