• 제목/요약/키워드: Effluent water

검색결과 1,208건 처리시간 0.031초

방류수질 예측을 위한 AI 모델 적용 및 평가 (Application and evaluation for effluent water quality prediction using artificial intelligence model)

  • 김민철;박영호;유광태;김종락
    • 상하수도학회지
    • /
    • 제38권1호
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

하천 수질에 대한 36시간 연속 모니터링 기법 연구 (36hrs Continuous Monitoring Methodology for Effluent and Receiving Water Quality)

  • 박정규;정홍배;문성환;류태권;류제영;황인영
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권4호
    • /
    • pp.153-159
    • /
    • 2001
  • The main point source of pollution of the Keumho river in Taegu, Korea, stems from waste from the areas of industrial complexes . Although it is widely accepted that pollutants in waste water negatively effects general water quality, it is difficult to evaluate the effluent effect because of varying conditions in ambient water and inconclusive knowledge of causative pollutants. To analyze the water in relation to the industrial effluent in the area, pH. temperature, conductivity, and Microtox toxicity of various river samples were measured. Water samples were collected every 2 hours for 36 hours from Keumho river and Dalseo stream. Data from continuous monitoring for 36 hours showed that effluent in Keumho river originated from Dalseo stream, which is near adjacent to industrial complexes. Change in toxicity and other factors tested during the 36 hours indicated that continuous monitoring was necessary for a satisfactory effluent toxicity test Furthermore, in addition to water quality monitoring, it was concluded that sediment toxicity also needed to evaluate effluent effects.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유역하수도 공공하수처리시설의 방류수 수질 준수농도 설정방안 연구: 진위천 수계를 중심으로 (A study on Determination Method of the Compliance Concentration of Effluent Limitation from Public Sewage Treatment Works in the Jinwee-stream Watershed Sewer System)

  • 정동환;조양석;김영석;안경희;정현미;권오상
    • 상하수도학회지
    • /
    • 제29권4호
    • /
    • pp.493-502
    • /
    • 2015
  • In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class I to IV areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class II~III areas, from 10mg/L to 5mg/L in class IV areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.

연못을 이용한 동절기 인공습지 오수처리수의 추가 처리 (Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season)

  • 윤춘경;전지홍;김민희;함종화
    • 한국농공학회지
    • /
    • 제44권4호
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

농업용수재이용을 위한 하수처리장 현황조사 (Investigation of Effluent of Wastewater Treatment Plants for Agriculture Reuse)

  • 이광야;김해도;정광근;이종남
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.521-526
    • /
    • 2005
  • Water Quality of effluent from wastewater treatment plants was reviewed to reuse effluent for agricultural water as alternative water resources. Among 2004, wastewater treatment plants, 19 plants are found to be used as wastewater resources applicable to irrigation. The total effluent capacities are 9,293 thousand $m^3$per day, which may be used to irrigate paddy fields. In order to know how much the effluent can be use for agricultural water, we classified the effluent according to the river basin area and evaluated the water quality of the effluent.

  • PDF

백운산 지역내 중소형 양어장에 의한 계류수의 이화학적 요인의 변화 (Changes on the Physicochemical Factor of Stream Water by Medium and Small type Fish Farm in Mt. Baegun Area)

  • 박재현
    • 한국환경복원기술학회지
    • /
    • 제8권3호
    • /
    • pp.43-52
    • /
    • 2005
  • Evaluations of the fish farm influences on stream water quality may provide basic informations on watershed management to reduce environmental impact due to fish farm development and to conserve stream water quality in forested watershed area. In this research influent, effluent water in the fish farm and stream water qualities around Mt. Baegun area were monitored seasonally for six years and the following results were obtained. Due to the increase of pH in effluent water from the fish farm it was believed that alkalization of stream water can be accelerated by large scale development of fish farms in the forested watershed area. Also, effluent water from the fish farm increase of EC higher than influent and stream water. As a result of regression analyses, pH, EC, DO, water temperature, total amount of cation and anion in influent and effluent water of fish farm show high significance.

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 난방성능 (Heating Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;이응열
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

실용 가능한 최적처리기술에 근거한 산업폐수 배출허용기준 설정 연구 - 펄프.종이 및 종이제품 제조시설 적용 사례 (Study on Establishment of the Industrial Wastewater Effluent Limitations Based on Best Practicable Control Technology Currently Available - Case Study for the Pulp, Paper and Paper Board Manufacturing)

  • 김재훈;신진수;이철구;이정영;이영선;유순주
    • 한국물환경학회지
    • /
    • 제28권4호
    • /
    • pp.608-614
    • /
    • 2012
  • The effluent limitation of industrial wastewater is based on uniform regulatory criteria for effluent discharge facilities of all in Korea. But, an individual effluent limitation on each effluent discharge facility is widely applicable for regulation of industrial wastewater in US.EPA. To decide an individual effluent limitation, TBEL (Technology-based effluent limitation) and WQBEL (Water quality-based effluent limitation) are used. TBEL is based on the capability of a treatment technology to reduce the pollutants. WQBEL is based on ambient water quality standards. In this study, TBEL were derived for the pulp, paper and paper board manufacturing based on best practicable control technology currently available. It was suggested that effluent limitations were $BOD_5$ 4.7 mg/L, $COD_{Mn}$ 44.3 mg/L, SS 13.2 mg/L, TN 1.4 mg/L, TP 0.15 mg/L and best practicable control technology currently available (BPT) was neutralization, activated sludge treatment and coagulation and sedimentation for the pulp, paper and paper board manufacturing.