• Title/Summary/Keyword: Effluent quality

Search Result 614, Processing Time 0.032 seconds

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

Study on the Wastewater Treatment by Floating Aquatic Plant System Using Water Hyacinth for the Industrial Complex in Rural Area (물옥잠을 이용한 수중처리방법에 의한 농공단지 폐수처리에 관한 연구)

  • 윤춘경;김형중;류재현;여운식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.64-71
    • /
    • 1997
  • Floating aquatic plant system using water hyacinth was applied to examine feasibility as a wastewater treatment system for the industrial complex in rural area. The wastewater from the industrial complex does not likely contain toxic pollutants because the industries which generate wastewater with toxic compounds are not allowed to move in. Pilot plant was installed at Baeksuk Nongkong Danzi in Chunahn-City, Chunchungnam - Do , and field study was performed during summer and fall of 1996. Hydraulic loading rate was 0. $0.19m^3/m^2$.day. The effluent concentration of DO was higher than influent, and it implies that 0.6m depth reactor was reaerated enough to increase DO level. The influent concentration of BOD varied significantly from less than 30 to 120mg/${\ell}$ during the study period, however, effluent concentrations were generally lower than the water quality standard and removal efficiency was up to 85%. The influent concentration of COD also showed wide variation from less than 40 to 160mg/${\ell}$ and effluent concentration was higher than water quality standard when influent concentration was over l00mg/${\ell}$. The influent concentrations of T-N and T-P were lower than water quality standard and no further treatment was required, and these compounds were also removed in the system. Although some improvement and refinement are still required, overall* the floating aquatic plant system was proved to be feasible to apply to treat wastewater from industrial complex in rural area.

  • PDF

A Study on the improvement of treatment efficiency in a conventional sewage treatment plant (기존 하수처리장에서의 처리 효율개선에 관한 연구)

  • 안철우;박진식;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.50-56
    • /
    • 2000
  • In this study, sewage were treated with operating Two-step Aeration System and conventional activated sludge process together in a condition. At the same HRT 8hr of Two-step Aeration System and Activated Sludge Process, BOD treatment efficiency of 1st sedimentation basin effluent 36.9% by Two-step Aeration system was 12.3% higher than 24.65 by Activated Sludge Process and the COD treatment efficiency 39.8% by two-step Aeration System was 11.6.3% higher than 28.2% by Activated Sludge Process. BOD and COD treatment efficiencies of 2nd sedimentation basin effluent were 88.1% and 85.6% Two-step Aeration System and were 83.8% and 82.3% Activated Sludge Process. In the first treatment, as BOD was relatively removed a lot, F/M ratio 0.17, $0.21{\cdot}BOD/kg{\cdot}MLSS.d$ was maintained by Activated Sludge Process. Therefore it was proved that organic matter treatment efficiency by Two-step Aeration System os Higher than by Activated Sludge Process in a aeration time 8hr. $NH_4^{+}-N$ treatment efficiencies were 55.5% by Two-step Aeration System and 39.75 by Activated sludge Process. $NO_3^{-}-N$ concentration in 2nd. sedimentation basin effluent were 3.33% by Two-step Aeration System and 2.36% by Activated Sludge Process. From this result, Two-step Aeration System was proved more advantageous treatment process for nitrification than Activated Sludge Process. The fluctuation range of BOD, COD and SS concentration in 2nd sedimentation basin effluent $16~33mg/{\ell}$, $15~23mg/{\ell}$ and $14~22mg/{\ell}$ by Two-step Aeration System was smaller than $16~57mg/{\ell}$, $15~25mg/{\ell}$ by Activated sludge Process. Overall the fluctuation range in 2nd sediment basin effluent by was smaller than by Activated Sludge Process. As a result, it is possible for this Two-step Aeration with no facility investment and a little of operation condition change in a conventional sewage treatment plant to get stability and nitrification of treatment water quality.

  • PDF

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.

A study on characteristics of influent and effluent pollutants in public sewage treatment works combined with industrial wastewater and landfill leachate (공공하수처리시설에서 수질오염물질 유입 및 배출 특성 고찰 - 산업폐수 및 매립지 침출수 연계처리 시설을 중심으로 -)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyung-Hee;Kim, Eunseok;Kim, Changsoo;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2016
  • In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on "Water Quality Monitoring Networks" in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.

Case Study of Cost Effect Analysis for Toxic Compounds to Developing Effluent Limitation Standards : Focus on 1,4-Dichlorobenzene (수질유해물질 배출허용기준 설정에 따른 배출시설 비용영향 분석사례 연구: 1,4-Dichlorobenzene을 중심으로)

  • Kim, Kyeongjin;Kim, Wongi;Heo, Jin;Kim, Kwangin;Kim, Jaehoon;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.557-565
    • /
    • 2010
  • Recently, regulations on toxic compounds in aquatic environment have been strengthened in korea due to the increasing public awareness of the water quality. Typically, these regulations include introduction of emerging toxic compounds and stricter effluent limitations for the already regulated compounds. However, too strict regulations may cause excessive burden on the industry. Therefore it is also important to assess the economic impacts when the new effluent limitation guidelines are introduced. The estimation of the additional cost for the wastewater dischargers to meet the new guidelines are based on the selected treatment technology to handle the hazardous substances and the regulatory levels for effluent limitations. To explore the procedures for cost estimation in enforcing new effluent limitations, a case study was performed specially for 1,4-dichlorobenzene. The pollutants of concern are surveyed for different industrial categories and various treatment technologies. For a given pollutant, the general performances of the treatment technologies are surveyed and a representative technology is selected. For a given technology, the capital cost and annual Operation and Maintenance (O&M) cost was calculated. The calculation of baseline costs to operate ordinary treatment technologies is also important. The ratio between the cost for introducing new treatment process and the baseline cost required for conventional technology was used to evaluate the economic impact on the industry. For 1,4-dichlorobenzene, steam stripping and activated carbon processes were selected as the specific treatment technologies. The cost effects to the regulation of the compound were found to be 6.4% and 14.5% increase in capital cost and O&M cost, respectively, at the flow rate over $2,000m^3/d$ for the categories of synthetic resin and other plastics manufacturing industry. For the case of petrochemical basic compounds manufacturing industry, the cost increases were 5.8% and 12.4%, respectively. It was suggested that cost effect analysis to evaluate the economic impacts of new effluent limitations on the industry is crucial to establish more balanced and reasonable effluent limitations to manage the industrial wastewater containing emerging toxic compounds in the wastewater.

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

The Assessment on the Effect of Discharge and Variation of Water Quality from the Sewage Treatment Plants in Seoul (서울시 하수처리장 수질의 변동 및 방류수의 영향 평가)

  • Kwak Mi-Ae;Jung Jong-Heub;Eo Soo-Mi;Lee Hong-Keun
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.1-12
    • /
    • 2004
  • This study was conducted to evaluate the variation characteristics of influent and effluent quality from sewage treatment facilities using activated sludge processes and to assess the impact caused by discharge of treated sewage on the receiving water Monthly data of five water quality items (BOD, COD, SS, T-N, T-P) were used to understand the water quality at three sewage treatment plants in Seoul for five years from 1999 to 2003. Concentration differences of water quality parameters were observed between upstream and downstream site at the sewage treatment plant outfall to investigate the impact of discharge in Tan stream and Han river basin. 1. Due to the effect of continuous improvement in sewer system, the concentrations of influent went on increasing generally. 2. Effluent concentrations of BOD, COD and SS showed the trend of a little decreasing, but the trend of increasing in T-N and T-P. 3. In Tan stream basin, the impact of sewage treatment plant discharge was not observed directly, because concentration of discharge was lower than stream water's. But discharges from sewage treatment plants affected water quality at downstream site in Han river, concentration of T-P especially.