• Title/Summary/Keyword: Effluent organic matter

Search Result 145, Processing Time 0.027 seconds

Distribution Characteristics of Organic Carbon and Nutrient in Effluent of Land-based Aquaculture Farms around Wando in Korea (하계 완도 주변 육상 양식장 배출수 중 유기탄소 및 영양염의 분포 특성)

  • GyuRi Kim;Yujeong Choi;Tae–Hoon Kim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • To evaluate the impact of effluents from land-based fish farms on the coastal ocean of Wando, Korea, we analyzed inorganic nutrients, particulate organic carbon (POC), dissolved organic carbon (DOC), and colored dissolved organic matter (CDOM) in the effluent and influent of land-based fish farms during the summer (July) of 2021. The average concentrations of nutrients (Dissolved inorganic nitrogen, phosphorus, and silicate; DIN, DIP, and DSi, respectively) in the effluents of this study area were 17±3.7 μM, 1.4±0.7 μM, and 14±1.6 μM, respectively. The average concentrations of POC and DOC were 37±22 μM and 81±13 μM, respectively, with POC accounting for about 30% for total organic carbon in effluents. The Reduced Dissolved Inorganic Nitrogen/Total Dissolved Inorganic Nitrogen ratio (0.7), potential short-period index, indicates that the discharge of nutrients excreted by the fish and unconsumed feed into coastal water results in such nutrients being deposited and accumulated in the sediment. Subsequently, this continuous accumulation triggers the release of ammonium ions during organic matter decomposition, and the ammonium-enriched waters that encroach on fish farms as influent seem to be due to the diffusion of high concentrations of ammonium from bottom sediment. Furthermore, we used fluorescence indices to examine the characteristics of organic matter sources, obtaining mean values of 1.54±0.19, 1.06±0.06, and 1.56±0.06 for the humification index, biological index, and fluorescence index, respectively, in the effluent. These results indicate that the organic matters had an autochthonous origin that resulted from microbial decomposition, and such organic matters were rapidly generated and removed by biological activity, likely supplied from the sediment. Our results suggest that the effluent from land-based fish farms could be a potential source of deoxygenation occurrence in coastal areas.

Conversion of CODMn into TOC and Refractory Organic Matter Concentrations for Treated Sewage using Regression Equations (회귀식을 사용한 하수처리장 방류수 CODMn 농도의 총 유기탄소 및 난분해성 물질 농도 전환)

  • Lee, Tae-Hwan;Lee, Bomi;Hur, Jin;Jung, Myung-Sook;Kang, Tae-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.969-975
    • /
    • 2010
  • Estimating the organic matter loadings from individual treated sewage has become important for establishment of effective management strategies to control refractory organic matter (R-OM) in watersheds. For this study, regression equations were constructed using treated sewage data to convert the chemical oxygen demand (COD) concentrations, which are mostly available from open database, into total organic carbon (TOC) and R-OM concentrations. Effluent samples were collected from five major sewage treatment plants (STPs) located upstream of the lake Paldang. Variations in the OM concentrations were not associated with either the location of the STP or the sampling season. The effluent investigated were characterized by higher ratio of R-OM with respect to biodegradable organic matter (B-OM) and higher presence of dissolved organic matters (DOM) versus particulate organic matter (POM). Compared to $COD_{Mn}$, $COD_{Cr}$ exhibited higher oxidation efficiencies and greater variations in the concentrations. The concentrations of $COD_{Mn}$ were positively correlated with dissolved organic carbon (DOC), total organic carbon (TOC), and R-OM concentrations. There was nearly no seasonal and annual variation in the regression equations between $COD_{Mn}$ and TOC or R-OM concentrations. The constructed regression equations for TOC and R-OM were $0.650({\pm}0.071){\times}COD_{Mn}+1.426({\pm}0.575)$ and $0.340({\pm}0.083){\times}COD_{Mn}+2.054({\pm}0.670)$, respectively. The established equations are expected to contribute to estimating OM loadings from the STPs into the lake Paldang and also to compensating for the deficiency of the data for effluent OM concentrations in STP.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

Distribution of Organic Matter and Nitrogenous Oxygen Demand in Effluent of Sewage and Wastewater Treatment Plants (하·폐수처리시설 방류수내 유기물질 및 NOD 분포 특성)

  • Kim, Ho-Sub;Kim, Seok-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.20-31
    • /
    • 2021
  • In this study, an analysis of the characteristics of organic matter and nitrogenous oxygen demand (NOD) of 17 sewage effluent and wastewater treatments was conducted. High CODMn and carbonaceous biological oxygen demand (CBOD) concentrations were observed in the livestock treatment plants (LTP), wastewater treatment plants(WTP), and night soil treatment plants (NTP), but the highest NOD concentration and contribution rates of NOD to BOD5 were found in sewage treatment plants (STP). There was no significant difference in the CBOD/CODMn ratio for each of the six pollution source groups, but the LTPs, WTPs, and NTPs all showed relatively high CODMn concentrations in their effluent samples, indicating that they are facilities which discharge large amounts of refractory organic matter. The seasonal change of NOD in all facilities' effluent was found to be larger than the seasonal change of CBOD, and data results also revealed an elevation of NOD and NH3-N concentration from December to February, when the water temperature was low. There was no significant difference in NH3-N concentration in relation to pollution source group (p=0.08, one-way ANOVA), but the STP, which had a high NOD contribution rate to BOD5 of 48%, showed a high correlation between BOD5 and NOD (r2=0.95, p<0.0001). These results suggest that the effect of NOD on BOD5 is an important factor to be considered when analyzing STP effluent.

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

Removal of Organic Matter, Nitrogen and Phosphorus in an UASB Sewage Treatment Process with Recycle of Aerated Bio-Filter Effluent (UASB를 이용한 혐기성 하수처리공정에서 ABF 유출수 반송에 따른 유기물질과 질소 및 인 제거)

  • Tian, Dong-Jie;Byun, Byeong-Su;Lim, Hyun-Suk;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.381-387
    • /
    • 2013
  • Nitrogen and phosphorus removal was investigated in an UASB-ABF (Up-flow anaerobic sludge blanket - aerated bio-filter) anaerobic sewage treatment system. Successful removal of nitrogen and phosphorus with organic matters was possible in the UASB-ABF system from the results of 160 days operation with the influent raw domestic sewage. Removal efficiencies of organic matter (as TCOD) showed 64% in UASB without recycle of the ABF effluent, however, they increased to 92%, 95%, 96% with 120%, 180% and 240% recycle of the ABF effluent, respectively. Increasement of the organic matter removal was not prominent at recycle ratio above 180%. Apparent increase in TN removal occurred with recycle of the ABF effluent. TN removal efficiency was 18% without recycle, but it increased to 82% with 240% recycle of the ABF effluent. And stable nitrification above 95% was possible as a result of efficient removal of organic matter in the UASB with and without recycle of the effluent. Removal of both TP and $PO{_4}^{3-}$-P also increased remarkably with recycle of the effluent. Without recycle of the effluent, that is at strict anaerobic condition in UASB, TP was not removed, however, its removal efficiency increased to 51%, 63%, 71% at recycle ratios of 120%, 180%, 240%, respectively mainly at UASB.

Effect of coagulation conditions on ultrafiltration for wastewater effluent

  • Maeng, Sung Kyu;Timmes, Thomas C.;Kim, Hyun-Chul
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • Low-pressure membrane filtration is increasingly used for tertiary treatment of wastewater effluent organic matter (EfOM), mainly comprising organic base/neutral compounds. In-line coagulation with underdosing, charge neutralization, and sweep floc conditions prior to ultrafiltration (UF) was studied to determine removals of the EfOM components and consequent reduction of fouling using polyethersulfone membranes. Coagulation and UF substantially reduced fouling for all coagulation conditions while removing from 7 to 38% of EfOM organic acids. From 7 to 16% of EfOM organic base/neutrals were removed at neutral pH but there was no significant removal for slightly acid coagulation conditions even though fouling was substantially reduced. Sweep floc produced the lowest resistance to filtration but may be inappropriate for in-line use due to the large added volume of solids. Charge-neutralization resulted in poor recovery of the initial flux with hydraulic cleaning. Under-dosing paralleled sweep floc in reducing hydraulic resistance to filtration (for sub-critical flux) and the initial flux was also easily recovered with hydraulic cleaning. Hydrophobic and hydrophilic base/neutrals were identified on the fouled membranes but as previously reported the extent of fouling was not correlated with accumulation of organic base/neutrals.

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.