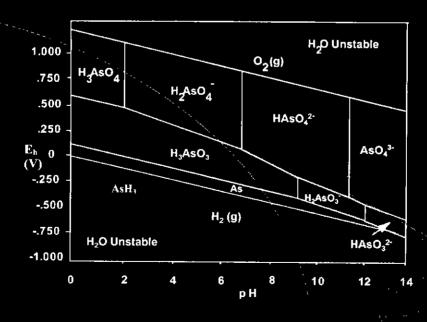
#### Selected Membrane Applications: Arsenic (As), Perchlorate (ClO<sub>4</sub><sup>-</sup>), Natural Organic Matter (NOM), and Effluent Organic Matter (EfOM)

Gary Amy\*, Phil Brandhuber, Yeomin Yoon, Jaeweon Cho, and Chalor Jarusutthirak (\*University of Colorado, USA) Selected Membrane Applications:
Arsenic (As),
Perchlorate (ClO<sub>4</sub>-),
Natural Organic Matter (NOM),
and Effluent Organic Matter (EfOM)

Gary Amy\*,
Phil Brandhuber, Yeomin Yoon,
Jaeweon Cho, and Chalor Jarusutthirak
\*University of Colorado
USA

# Part 1 Treatment of Arsenic in Drinking Water via Membrane Technology

Philip Brandhuber and Gary Amy


Dept. of Civil & Environmental Engineering University of Colorado at Boulder Boulder, Colorado USA

#### Outline

- Arsenic Chemistry
- Performance of (Spiral Wound) RO/NF/UF
  - Factors Influencing Performance
- **Performance of Coagulation/Microfiltration** 
  - Factors Influencing Performance

#### Arsenic E<sub>h</sub> - pH Diagram in Pure Water

Ferguson and Garvis (1972)



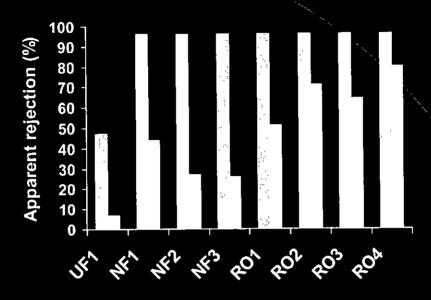
#### RO/NF/UF Performance - 20 to 50 μg/l As Spike

**MQ** Water

| Class | # Tested | As(V) Removal | As(III) Removal |
|-------|----------|---------------|-----------------|
| NF    | 3        | 85 - 96 %     | 5 – 40 %        |
| UF    | 3        | 5 – 63 %      | 0-5%            |

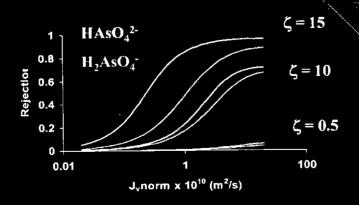
**Groundwaters (2)** 

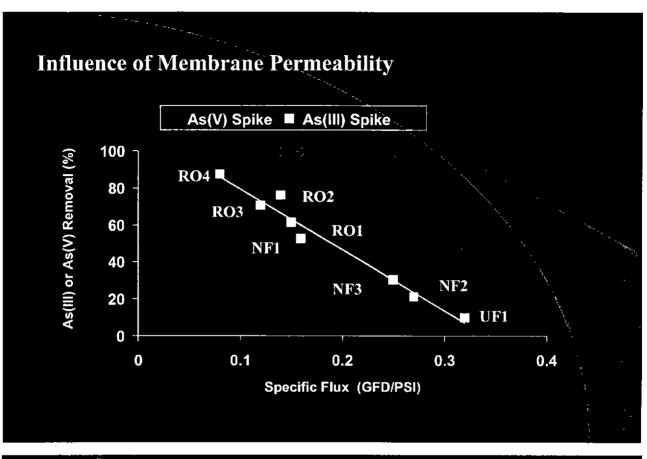
| Class | # Tested | As(V) Removal | As(III) Removal |
|-------|----------|---------------|-----------------|
| RO    | 1        | 86 - > 94 %   | NA              |
| NF    | 1        | 62 – 89 %     | NA.             |
| UF    | 1        | 34 – 72 %     | NA N            |

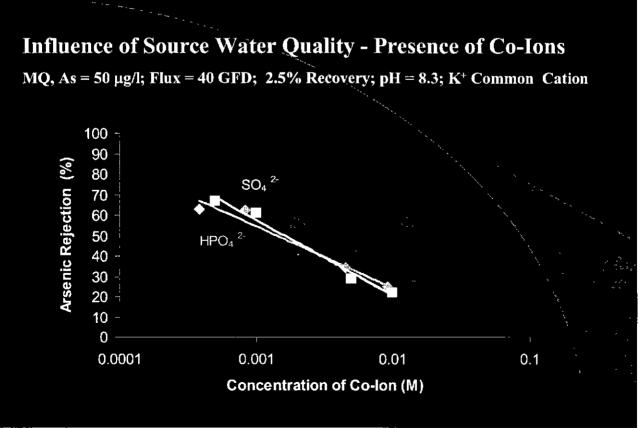

Surface Water

| Class | # Tested | As(V) Removal | As(III) Removal |
|-------|----------|---------------|-----------------|
| RO    | 4        | > 96 %        | 51 – 80 %       |
| NF    | 3        | > 96 %        | 20 – 44 %       |
| UF    | 1        | 47 %          | 7 %             |

#### Factors Influencing As Rejection by RO/NF/UF Membranes

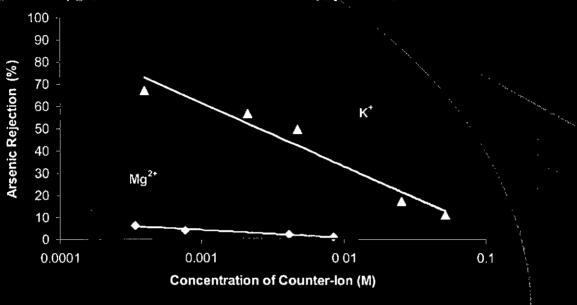

- \* Arsenic Speciation
- Membrane Charge/Permeability
- Source Water Composition
- Hydraulic Operation of Membrane
- Treatment pH




#### Influence of Membrane Charge on As(V) Rejection

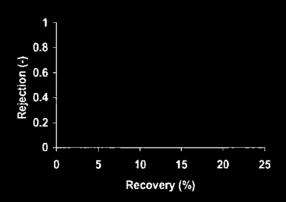
Theoretical Influence of Membrane Charge (ζ) on Rejection

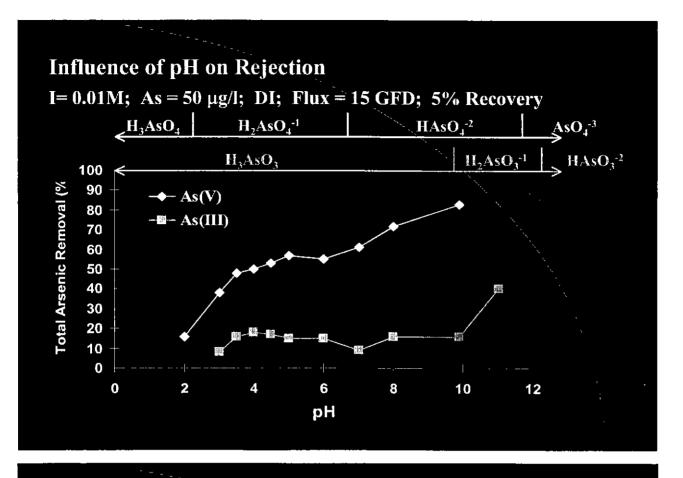






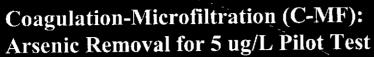

## **Influence of Source Water Quality - Presence of Counter Ions**

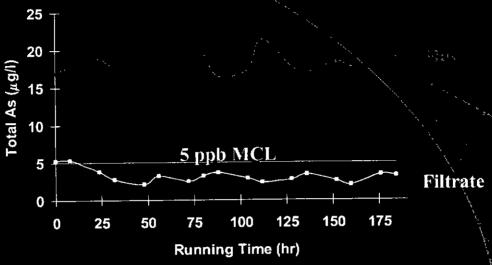

MQ, As =  $50 \mu g/l$ ; Flux = 40 GFD; 2.5% Recovery; pH = 8.3; Cl Common Anion




#### Influence of Hydraulic Operation of Membrane

As =  $50 \mu g/l$ ; I= 0.001M; pH = 8.2; Constant Flux = 40 GFD

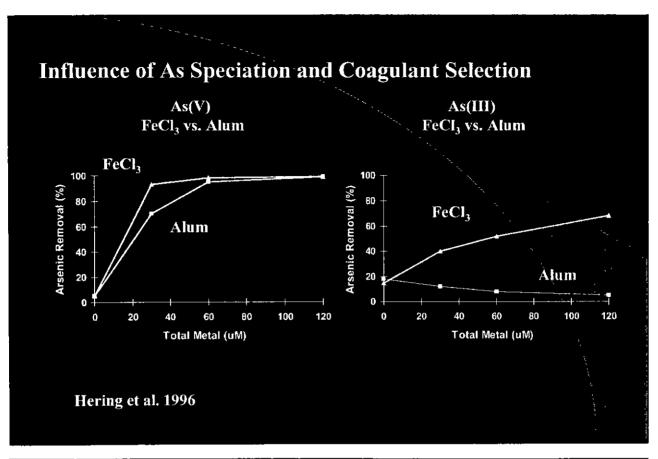

Rejection vs. Recovery at Constant Flux

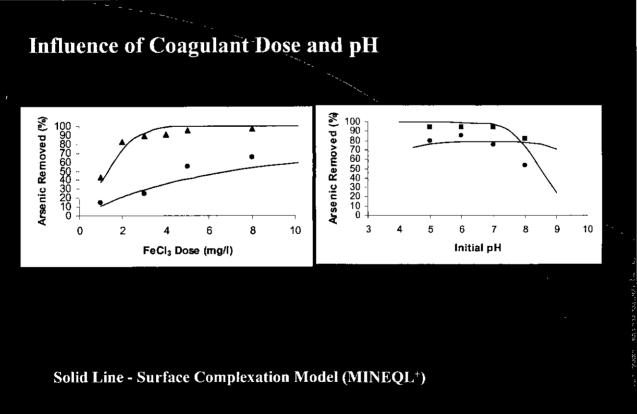




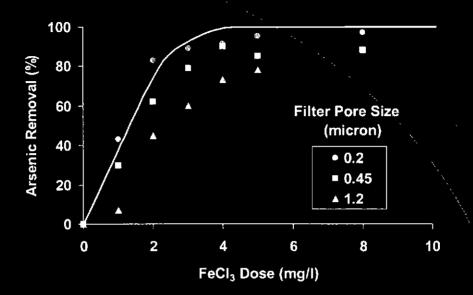

### Summary of Factors Influencing As Rejection by RO/NF/UF Membranes

- Arsenic Speciation
  - As(V) Rejection > As(III) in RO As(V) Rejection >> As(III) in NF and UF
- Membrane Charge/permeability
  - Presence of Membrane Charge vs. Magnitude
  - Low Specific Flux for High As(III) Rejection
- Source Water Composition
  - Influence of Co- and Counter Ions on As(V) Rejection
  - Indirect Influence of NOM?
- Hydraulic Operation of Membrane
  - Possibility of Concentration Polarization
- Treatment pH
  - Treat as HAsO<sub>4</sub><sup>2</sup>-




 $FeCl_3$  Dose = 6.99 mg/l, Flux = 68 GFD (2 GPM) or 101 GFD (2.97 GPM), Recovery = 92%, As Removal 83%


#### Factors Influencing As Rejection by MF Membranes

- Arsenic Speciation/Coagulant Selection
- Coagulation pH
- Coagulation Kinetics/Floc Size









Solid Line - Surface Complexation Model (MINEQL+)

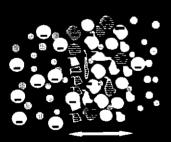
## **Summary of Factors Influencing As Rejection Coagulation/Microfiltration**

- \* Arsenic Speciation/Coagulant Selection
  - At pH < 7, Alum and Ferric Coagulation Equally Effective on Molar Basis, Ferric More Efficient on Weight Basis
  - Ferric As(III) Removal < As (V)
  - Alum As(III) Removal << As(V)</p>
- Coagulation pH
  - < pH 7.5 for As(V) with Ferric</pre>
- Coagulation Kinetics/Floc Size
  - Sorption Faster than Aggregation
  - Floc Size Optimization for Fouling Control vs. As Removal

# Part 2 Perchlorate Rejection: Effect of Zeta Potential of Negatively Charged Nanofiltration Membranes

Yeomin Yoon and Gary Amy University of Colorado at Boulder, CO

#### **Outline**


- Objectives
- Hypotheses
- Membrane Unit
- Membrane Characterizations
- •Results
  - •Perchlorate rejection
  - •Zeta potential (ZP)
  - Effect of ZP on ClO<sub>4</sub> and arsenite (As (III)) rejection
- Summary

#### Hypotheses

#### Factors promoting perchlorate rejection

- Membrane: lower MWCO (steric rejection) and higher negative charge (electrostatic rejection; surface charge based on functional groups)
- Water quality: higher pH and lower conductivity (ionic strength), ionic composition based on mono- and divalent co- and counter- ion concentration

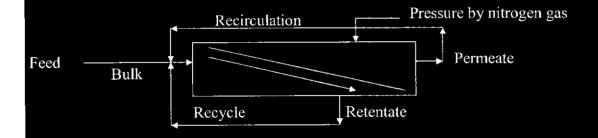
# Dominant mechanisms for porous and negatively charged NF membranes



Membrane
Tight Nanofiltration
(negatively charged):

steric/size exclusion and electrostatic exclusion

• :H<sub>2</sub>O


:ClO<sub>4</sub>



Membrane

Loose Nanofiltration (negatively charged): electrostatic exclusion

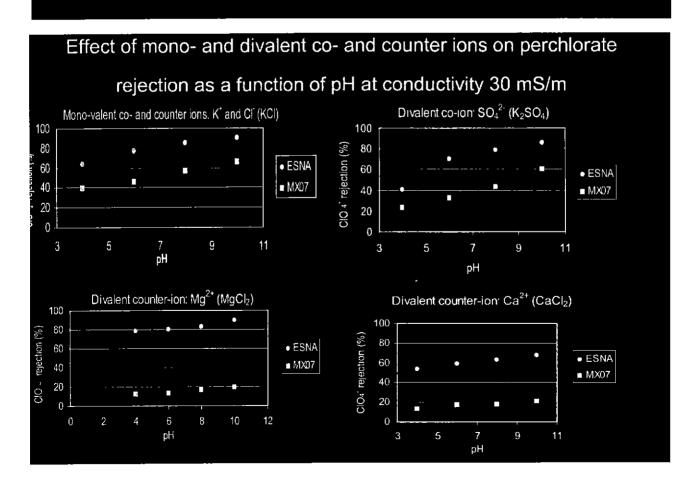
#### • Bench-scale cross-flow flat-sheet unit



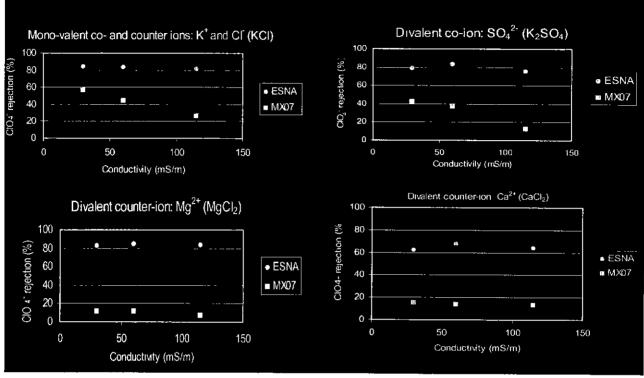
\* Membrane effective area: 154.8 cm<sup>2</sup>

#### Membrane characterizations

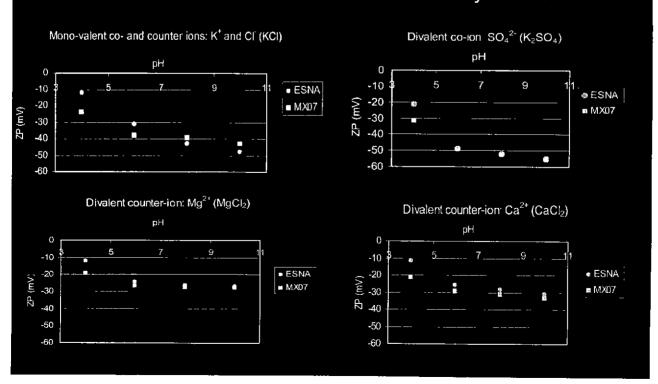
#### Physical-chemical properties


|              |                              | -             |                                                |
|--------------|------------------------------|---------------|------------------------------------------------|
| Membrane     | Material                     | MMCO/<br>MWCO | ZP at pH 8 and 30 mS/m with conductivity (KCl) |
| ESNA<br>(NF) | Composite aromatic polyamide | 200           | -41.2 mV                                       |
| MX07<br>(NF) | Composite aromatic polyamide | 400           | -39.7 mV                                       |

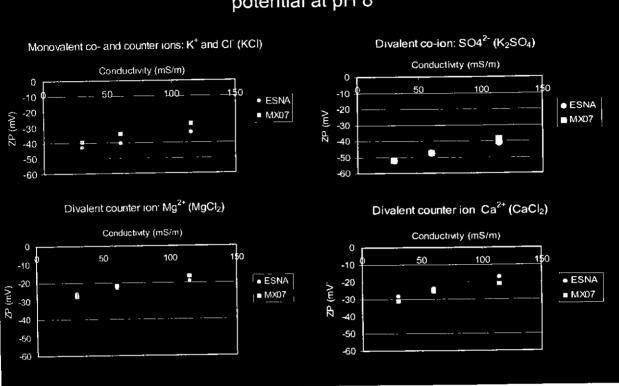
#### Pure water permeability


| Membrane | Manufacturer | L/day-m²-kPa |
|----------|--------------|--------------|
| ESNA     | Hydranautics | 1.05         |
| MX07     | Osmonics     | 0.47         |

#### Results


- ClO<sub>4</sub> rejection with cross-flow flat-sheet test unit as a function of pH and conductivity
- Zeta potential based on measured streaming potential as a function of pH and conductivity
- Effect of ZP on ClO<sub>4</sub>- and arsenite (As (III)) rejection

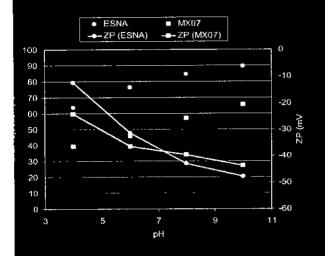


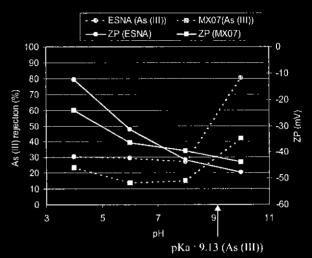

## Effect of mono- and divalent co- and counter ions on perchlorate rejection as a function of conductivity at pH 8



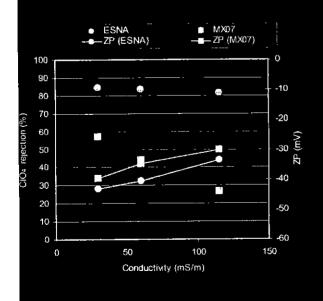
## Effect of pH on zeta potential in the presence of mono- and divalent co- and counter ions at conductivity 30 mS/m

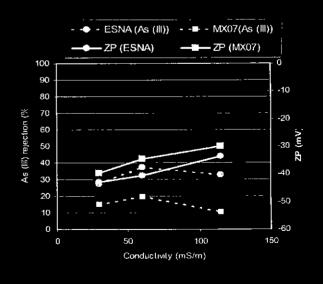



## Effect of mono- and divalent co- and counter ions on zeta potential at pH 8




# Comparison of estimated ionic radius of anions and As (III) based on mobility (Adkins (1990), Adamson (1979), Brandhuber (1999))


| Ionic radius/<br>hydrated radius:                                                  | •    | •    | 3.       |                    |                               |
|------------------------------------------------------------------------------------|------|------|----------|--------------------|-------------------------------|
| nytrated radius.                                                                   | OH-  | Cl-  | As (III) | ClO <sub>4</sub> - | SO <sub>4</sub> <sup>2-</sup> |
| lolecular mass:                                                                    | 17   | 35.5 | 126      | 99.5               | 96                            |
| Mobility * 10 <sup>13</sup> (mol m <sup>2</sup> J <sup>-1</sup> s <sup>-1</sup> ): | 21.3 | 8.2  | N/A      | N/A                | 4.3                           |


# Effect of pH and ZP on ClO<sub>4</sub> and As (III) rejection at conductivity 30 mS/m with KCl





## Effect of solution conductivity (KCl) and ZP on ClO<sub>4</sub> and As (III) rejection at pH 8





#### Summary

- Perchlorate rejection
  - -ClO<sub>4</sub> significantly rejected by a negatively charged and relatively small pore NF (ESNA) membrane regardless of presence of co-/counter-ions.
  - ClO<sub>4</sub> rejection greatly reduced by the presence of co-/counter-ions for a negatively charged and relatively large pore NF (MX07) membrane.
- •Zeta potential
  - -Zeta potential of both ESNA and MX07 membranes significantly increased with increasing pH in presence of co- and counter ions
  - Zeta potential of both ESNA and MX07 membranes slightly decreased with increasing co- and counter ions
- •Effect of ZP on ClO<sub>4</sub> and As (III) rejection
  - -ClO<sub>4</sub> rejection significantly influenced by size (steric) exclusion for ESNA membrane regardless of membrane charge
  - -ClO<sub>4</sub> rejection significantly influenced by electrostatic exclusion for MXO7 membrane
  - As (III) used as a non-charged model solute to verify electrostatic interaction between ClO<sub>3</sub><sup>-</sup> and negatively charged membrane

#### Part 3

Interactions Between Natural Organic Matter (NOM) and Membranes: Rejection and Fouling

Jaeweon Cho\* and Gary Amy University of Colorado, USA \*KJIST, Kwangju Korea

#### **Outline**

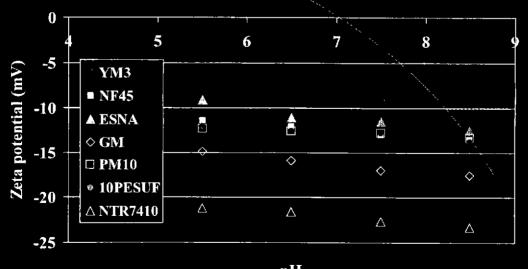
- Hypotheses
- Hydrodynamic Conditions: f/k Ratio
- Membrane Unit
- Membrane Properties and NOM Characteristics
- Flux-Decline and Fouling Results
- NOM Rejection Results
- NOM Rejection Equations & Flux-Decline Models
- J<sub>o</sub>/k Ratio: Effects on Flux-Decline & NOM Rejection
- Fouled Membrane Characterization

#### Hypotheses

- Factors Promoting Flux-Decline (& Fouling)
  - NOM: Greater Hydrophobicity, Lower Charge Density
  - Membrane: Greater Hydrophobicity, Lower Negative Charge
  - Water Quality: Lower pH, Higher I, Higher Ca
- Factors Promoting NOM Rejection
  - NOM: Higher MW, Higher Charge Density
  - Membrane: Lower MWCO, Greater Surface Charge
- Rejection (and Fouling) Mechanisms
  - Steric Rejection
  - Electrostatic Exclusion
  - (Adsorption)

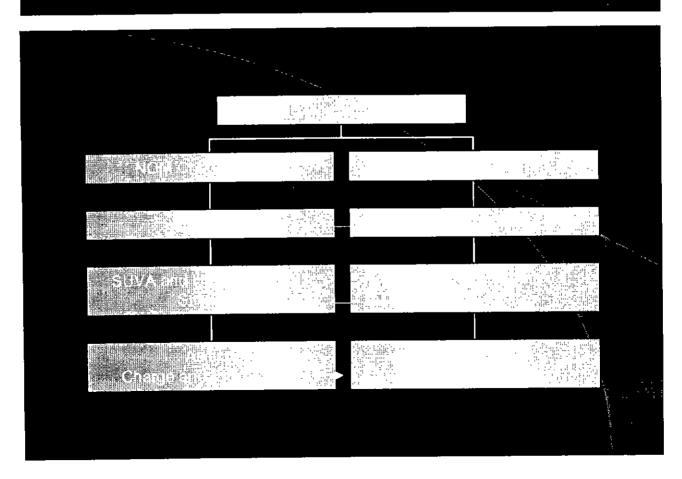
#### Hydrodynamic Conditions: Jo/k Ratio

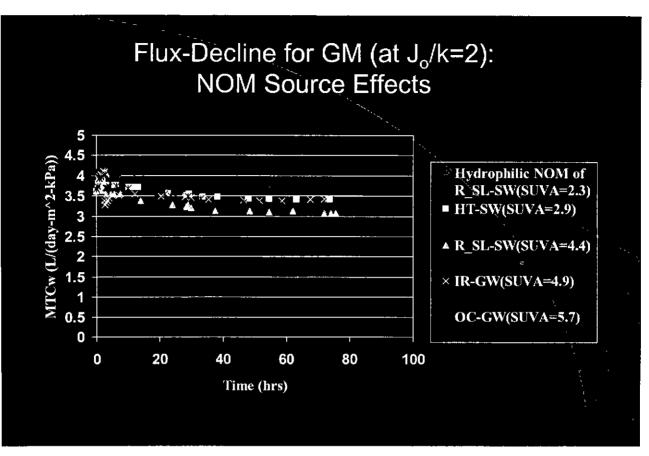
- k (cm/s)
  - Mass Transfer Coefficient; Back-Diffusional Transport away from the Membrane Surface
  - J<sub>o</sub> (cm/s)
    - Permeate Flux
- J<sub>0</sub>/k Ratio Related to Concentration Polarization
- □ Implications of f/k Ratio:
  - Optimum Operating Conditions for Minimizing Flux-Decline and Maximizing NOM Rejection

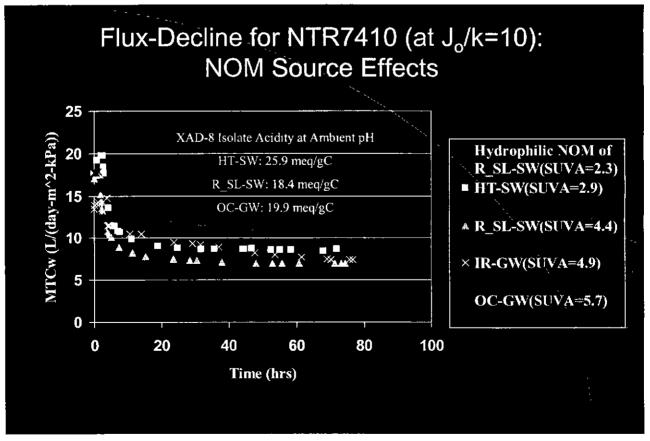

#### Hypotheses for the J<sub>o</sub>/k Ratio

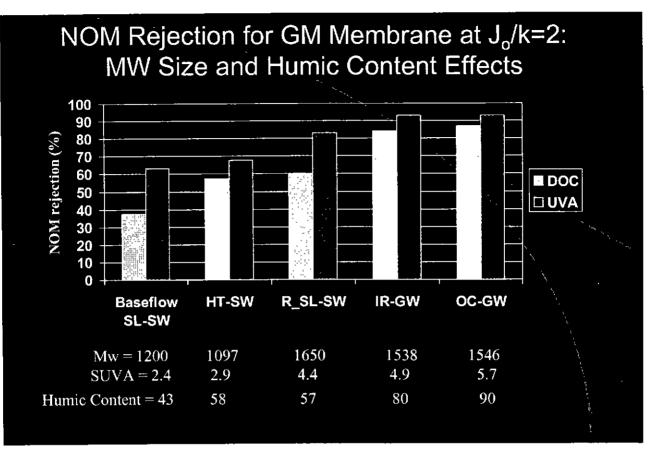
- As the J<sub>o</sub>/k Ratio Increases, C.P. Increases,
  - Flux Decline Increases
  - NOM Rejection Decreases
- As the J<sub>o</sub>/k Ratio Decreases, C.P. Decreases,
  - Flux Decline Decreases
  - NOM Rejection Increases
- At the Same J<sub>o</sub>/k Ratio,
  - Flux Decline and NOM Rejection Trends are Similar for Different Membranes

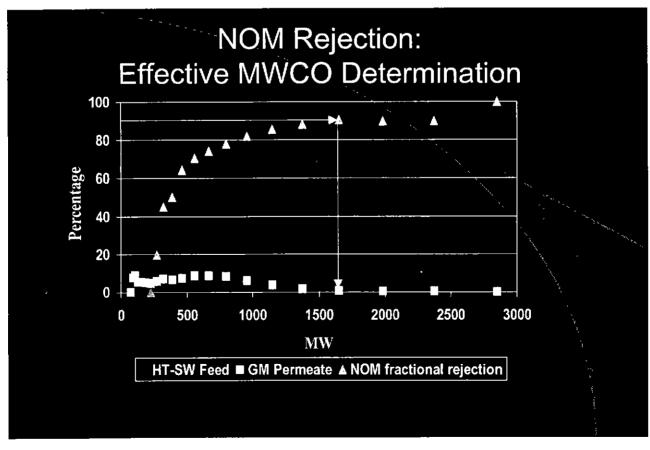
# Membrane Properties: Type (Polyamide, Polyethersulfone, Cellulose), MWCO, & Contact Angle

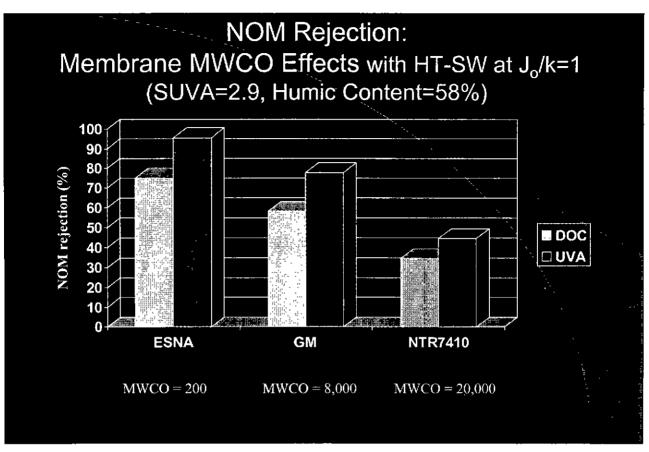

| Туре | Code    | MWCO   | Contact Angle |
|------|---------|--------|---------------|
| PA   | NF45    | 400    | 45            |
| PA   | ESNA    | 200    | 60            |
| PA   | GM      | 8,000  | 55            |
| PES  | NTR7410 | 20,000 | 61            |
| PES  | PM10    | 20,000 | 62            |
| PES  | 10PESUF | 10,000 | 51            |
| CL   | YM3     | 3,000  | 13            |

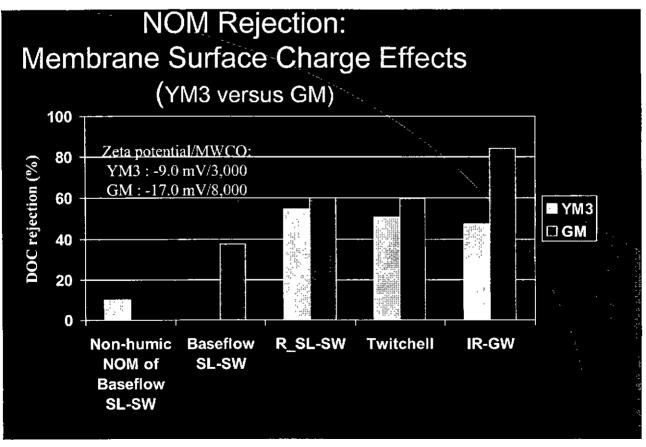

#### Membrane Properties: Zeta Potentials





#### NOM Characteristics: SUVA and Humic Content, and MW


| NOM Source     | SUVA<br>(m <sup>-1</sup> mg <sup>-1</sup> L) | Humic Content (%) | Molecular<br>Weight |
|----------------|----------------------------------------------|-------------------|---------------------|
| Baseflow SL-SW | 2.4                                          | 43                | 1,200               |
| HT-SW          | 2.9                                          | 59                | 1,100               |
| Twitchell      | 3.7                                          | 61                |                     |
| Runoff SL-SW   | 4.4                                          | 57                | 1,650               |
| IR-GW          | 4.9                                          | 80                | 1,540               |
| OC-GW          | 5.7                                          | 90                | 1,550               |

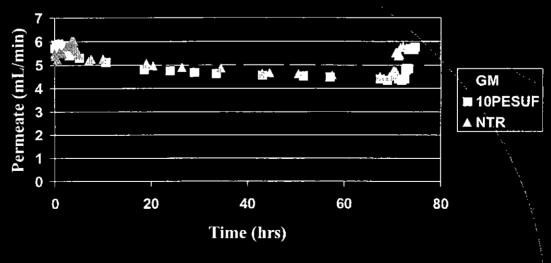


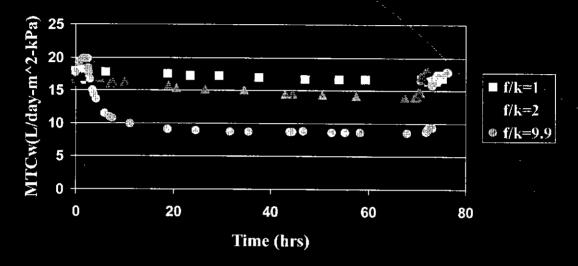




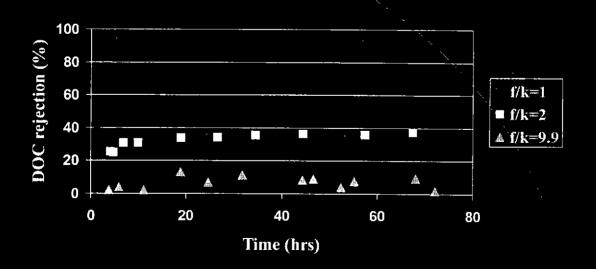


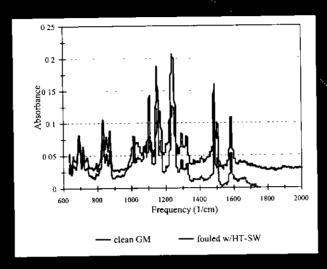




# NOM Rejection: Predictive Equations

- $R_{DOC} = 0.251 + 0.134(SUVA) 0.073(J_o/k)$  for GM for NOM with 2.4 < SUVA < 5.7, 1 < J\_o/k < 2  $R^2 = 87\%$
- $R_{DOC} = -0.369 + 0.204(SUVA) 0.065(J_o/k)$  for NTR7410 for NOM with 2.4 < SUVA < 5.7, 1 <  $J_o/k$  < 10  $R^2 = 86\%$

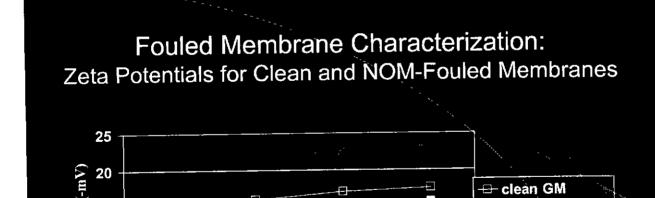

Effects of J<sub>o</sub>/k Ratio on Flux Decline: Comparison of GM, 10PESUF, and NTR7410 with HT-SW at Same J<sub>o</sub>/k=2 (ΔP= 50psi (GM), 10psi (10PESUF), 17psi (NTR7410))










# Fouled Membrane Characterization: IR Spectra for NOM-Fouled Membrane



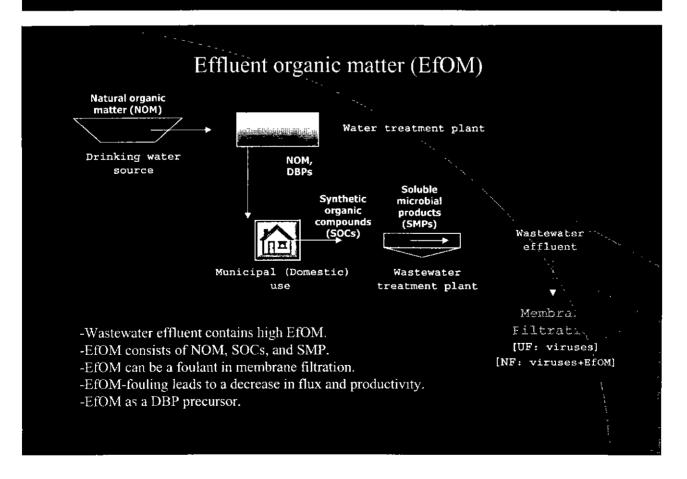
Leenheer/Bruchet:

Cell Fragments/Polysaccharides



#### **Summary**

- Flux-Decline:
  - NOM Characteristics and Membrane Properties have Little Effect at equal J<sub>o</sub>/k ratio
  - Hydrophilic NOM was a Major Membrane Foulant
- NOM Rejection:
  - Negative Charge-Density of Hydrophobic Acids Promoted NOM Rejection by Electrostatic Repulsion
  - Membrane Surface Charge Influenced NOM Rejection
  - NF Rejected More NOM than UF for typical NOM-Source Waters; More Similar Rejections by NF and UF Observed for High Humic NOM-Source Waters


#### Part 4

Membrane Filtration of Wastewater Effluents for Reuse: Effluent Organic Matter (EfOM) Rejection and Fouling

Chalor Jarusutthirak and Gary Amy

Department of Civil and Environmental Engineering University of Colorado at Boulder, Colorado, USA.

# Outline Introduction Objectives Experimental methods Results Summary



#### Objectives:

- -To investigate the effects of EfOM-fouling on permeate flux and EfOM-rejection by nanofiltration (NF) and ultrafiltration (UF) membranes
- -To study the characteristics of EfOM affecting EfOM-fouling and EfOM-rejection

#### **Experimental methods**

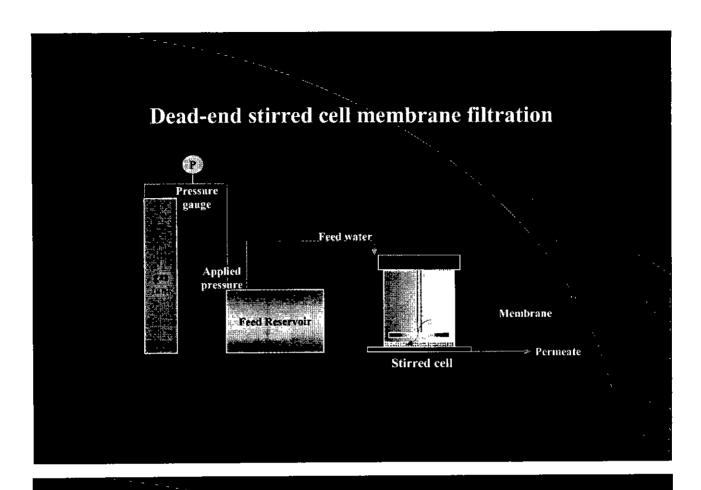
#### Source waters:

- -Boulder (Colorado, USA) secondary effluent → BO-SE
- -Mesa (Arizona, USA) secondary effluent → ME-SE
- -Mesa (Arizona, USA) tertiary effluent → ME-TE

#### Characteristics of source waters:

| Source<br>water | рН   | Conductivity #S/cm | DOC | UVA<br>cm - | SJVA<br>L.mg <sup>-1</sup> .m <sup>-1</sup> | inact.<br>% DOC |
|-----------------|------|--------------------|-----|-------------|---------------------------------------------|-----------------|
| BO-SE           | 7.04 | 697                | 7.1 | 0.135       | 1.9                                         | 41              |
| ME-SE*          | 7.58 | 1812               | 5.6 | 0.108       | 1.9                                         | 38              |
| ME-TE*          | 6.61 | 1565               | 7.0 | 0.123       | 1.7                                         | 36              |

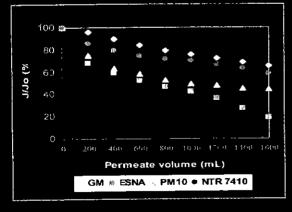
<sup>\*</sup> different sampling time

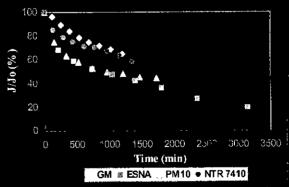

#### Membranes

- Nanofiltration (NF) membraneo ESNA membrane
- Ultrafiltration (UF) membranes
  - o GM membrane
  - o PM10 membrane
  - o NTR7410 membrane

#### **Characteristics of Membranes**

| Membrune | Type | Material   | MWCO   | Centact<br>angle(*) | Zefa potential (mV) at pH 7 | PWP<br>1day <sup>-1</sup> .m <sup>2</sup> .kPa |
|----------|------|------------|--------|---------------------|-----------------------------|------------------------------------------------|
| ESNA     | NF   | PΑ         | 200    | 60.3                | -11.5                       | 1.35                                           |
| GM       | UF   | PA         | 8,000  | 45.5                | -17.0                       | 2.96                                           |
| PM10     | UF   | Sulfonated | 10,000 | 55.1                | -12.8                       | 25.32                                          |
| NTR7410  | UF   | PES<br>PES | 20,000 | 49.5                | -22.6                       | 4.86                                           |


PA = Polyamide PES = Polyethersulfone




#### **Results:**

#### 1. Flux-decline test

Flux decline tests with BO-SE and different membranes

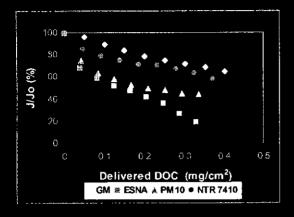


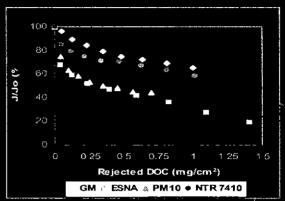


#### Transmembrane pressure

- E5NA:

73 psi - GM:


42 psi

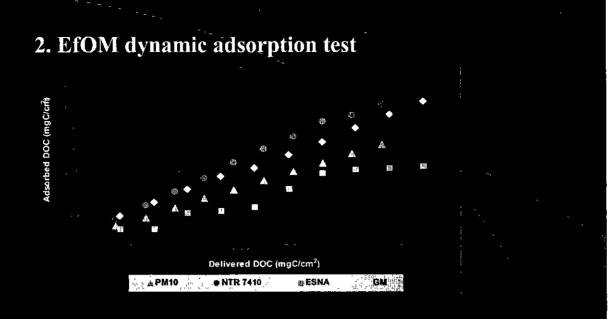

\_ PM1.6+

5 psi - NTR7410:

25 psi

Flux decline test with BO-SE based on delivered and rejected DOC \*

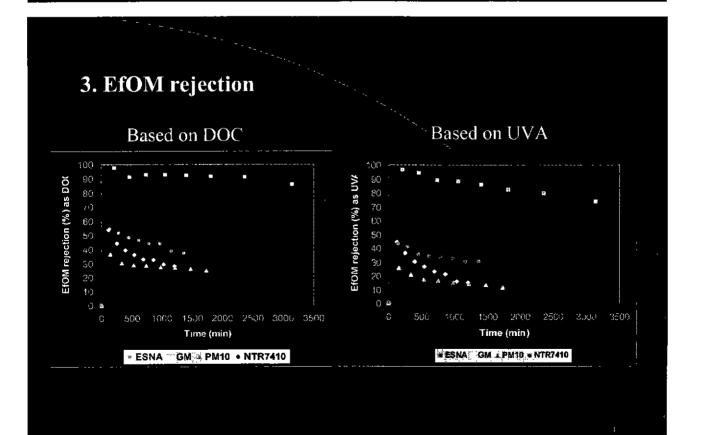




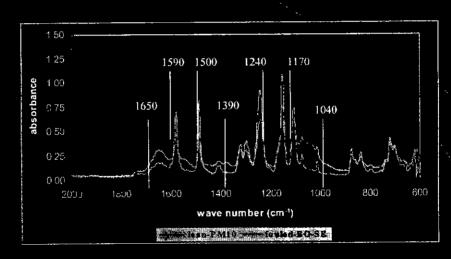

<sup>\*</sup> Delivered DOC = summation of feed DOC mass per unit area of membrane Rejected DOC = summation of rejected DOC mass per unit area of membrane

#### Characteristics of membranes vs. flux decline trends

| Numbrane | MWCO   | Centabliangle (°)<br>(Hydrophobioity) | Zeta potential<br>(mV) at pH 7 | % flux decline<br>for 1.6 L permoste | Volume (mL)<br>. For 20%<br>flux decline |
|----------|--------|---------------------------------------|--------------------------------|--------------------------------------|------------------------------------------|
| ESNA     | 200    | 60.3                                  | -11.5                          | 80                                   | 125~                                     |
| GM       | 8,000  | 45.5                                  | -17.0                          | 35                                   | 760                                      |
| PM10     | 10,000 | 55.1                                  | -12.8                          | 58                                   | ∖ 160                                    |
| NTR7410  | 20,000 | 49.5                                  | -22.6                          | 42                                   | 367                                      |
|          |        |                                       |                                |                                      |                                          |


Fouling Hydrophobicity, 1/Surface charge, and 1/MWCO




 $\textbf{Adsorbed DOC}: NTR7410 \ge GM \ge PM10 \ge ESNA$ 

Flux decline : ESNA > PM10 > NTR7410 > GM

Pore size: NTR7410 > PM10 > GM > ESNA



## 4. Fouling analysis using FTIR: FTIR spectra of clean and fouled PM10



Foulants: polysaccharides (1170-950), aromatic acids (1240), aromatic C=C (1620-1600), OH deformation and C-O stretching of phenolic OH (1400-1390), COO-, N-H, and C=N (1590-1517)

#### **Conclusions**

- 1. Flux decline by EfOM, EfOM-rejection, and EfOM-fouling mechanisms are dependent on MWCO, surface charge, and hydrophobicity of membrane; likewise, they are dependent on the characteristics of the source water EfOM as well.
- 2. Besides the hydrophobic fraction, the hydrophilic fraction of EfOM, e.g. polysaccharides, may act as a major foulant in membrane filtration of wastewater effluent.