• Title/Summary/Keyword: Effluent concentration

Search Result 796, Processing Time 0.023 seconds

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Development of the Automatic Control System for the Advanced Phosphorus Treatment in Sewage Treatment Plant (하수처리시설에서 인 고도처리를 위한 자동제어시스템 개발에 관한 연구)

  • Kim, Seon-Gok;Lee, Ho-Sik;Jun, Tae-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.300-304
    • /
    • 2012
  • It has a limitation to satisfy the phosphorus effluent criteria of 0.2 mg/L which will be reinforced from 2012 with the Biological Nutrient Removal (BNR) process. The chemical coagulation process has been operated in parallel with the biological treatment process for advanced treatment of phosphorous in the developed countries including Europe. However, the coagulation process has some disadvantages such as the desired goal may not be achieved without injecting the optimum dosage of the coagulant. This study developed the automatic control system to inject the optimum dosage of phosphorous coagulant into the coagulation process. The adopted coagulant was 10% Poly Aluminum Chloride (PAC) in this study. The automatic control system developed in this study was adopted for the treatment of the phosphorus from the effluent in SBR process. The automatic control system was composed of the data receiving part, the optimum coagulant dosage control part and the data transmit part. The result of the phosphorous advanced treatment of the SBR effluent using the automatic control system showed the removing efficiency over 95% consistently with the phosphorous concentration under 0.02 ~ 0.15 mg/L. The reproducibility analysis for checking the safety of automatic control system showed more than 95% correlation.

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Investigation of Eco-toxicological Substances in Banwol Industrial Drainages using the Regression Analysis (회귀분석을 이용한 반월 공단배수의 생태독성 원인물질 조사)

  • Kim, Yo-Yong;Woo, Jung-Sik;Hwang, Sun-Min;Kim, Moon-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.467-472
    • /
    • 2012
  • In this study, water quality and acute toxicity using Daphnia magna were analyzed to investigate the eco-toxicological substances identified as statistical analysis and propose a management plan for the effluent of Banwol industrial complex, Ansan, Gyeonggi-do. Cu, Zn, F, Mn concentrations in the effluent far exceeded the US standards to protect the aquatic ecosystem and eco-toxicity values were 5 ~ 22 TU. However, concentrations of heavy metals significantly decreased after Ansan public wastewater treatment plant operating a biological treatment and toxicity values were 0 TU. Zn, Cr, F and Cu in the effluent showed very strong and strong positive correlations with eco-toxicity values, respectively. Regression analysis resulted in an equation between toxicity and Zn, TU = $4.884{\times}Zn$ (mg/L) -0.391 showing Zn concentration should be managed less than 0.285 mg/L to keep the eco-toxicity (TU) less than 1.

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

The Effect of Sludge Settleability on the Performance of DNR Process (슬러지 침전성이 DNR 공정에 미치는 영향 평가)

  • Suhl, Chang-Won;Lan, Thi Nguyen;Jeong, Hyeong-Seok;Lee, Sang-Min;Lee, Eui-Sin;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.273-280
    • /
    • 2006
  • The sludge settleability is a key factor for operating activated sludge process as well as BNR (biological nutrient removal) process, because the poor sludge settling causes an increase of suspended solid in the effluent. In order to improving the sludge settleability, a settling agent such as iron dust can be applied. In this study, the effect of sludge settleability on the performance of DNR (Daewoo nutrient removal) process was investigated with GPS-X, which is the popular wastewater treatment process model program, and the result of modeling was verified with operating lab-scale DNR process. As a result, if the sludge blanket keeps stable in the secondary settling tank, the effluent quality is similar in spite of different SVI values. And in case of the good sludge settleability, short HRT or long SRT increased the biomass concentration in the bioreactor, and improved the pollutant removal efficiency. In spite of daily influent changing, the good sludge settleability also guaranteed the stable effluent quality. And the results of the lab-scale DNR process experiment could support the simulated results.

Sludge Thickening using Electro-Flotation in Water Treatment Plant (전해부상에 의한 상수 슬러지 농축효율)

  • Lee, Jun;Han, Mooyoung;Dockko, Seok;Park, Yonghyo;Kim, Tschungil;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation(DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process. because of high total solids and low moisture content in the sludge.

Contributions of emergent vegetation acting as a substrate for biofilms in a free water surface constructed wetland

  • Zhao, Ruijun;Cheng, Jing;Yuan, Qingke;Chen, Yaoping;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase ($31m^2$) in the vegetative area resulted in an increase of $220m^2$ of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.

Verification of biological nitrogen removal program in sewage or wastewater treatment plants (${\cdot}$ 폐수처리장에서의 생물학적 질소제거 프로그램 검증)

  • Kim, Hee-Sun;Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2007
  • Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with $R^2$ of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.

균체재순환 반응기에서의 젖산 생산

  • 유익근;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.277-282
    • /
    • 1994
  • In batch cultures of Lactobacillus delbrueckii, cell growth and lactic acid production were affected by two main factors, inhibition by lactic acid and limitation by nutritional components. In order to increase th productivity significantly, a continuous stirred tank reactor with cell recycle was employed. A cell desnity of 145g dry weight/l and a volumetric productivity of 73 g/l$\cdot $h were obtained with an effluent concentration of 85 g/l lactic acid. The productivity achieved by this system was 23-fold higher than those obtained by the corresponding batch cultivations. Once the lactic acid concentration reached the steady steady state, lowering the yeast extract concentration caused the reduction of the lactic acid concentration without affection the biomass concentration. Finally, the formation of D-lactate was investgated. During the various cultures, a small amount of D-lactate always formed, even thought a majority of lactate was L-isomer, It was supposed that the relative amount of the D-lactate was affected by glucose limitation, and there seems to exist a certain relationship between the concentration of D-lactate and acetate.

  • PDF