• Title/Summary/Keyword: EfficientNet-B4

Search Result 22, Processing Time 0.026 seconds

Deep learning algorithms for identifying 79 dental implant types (79종의 임플란트 식별을 위한 딥러닝 알고리즘)

  • Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.196-203
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

A Derivation of Comprehensive Protection Ratio and Its Applications for Microwave Relay System Networks

  • Suh Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • This paper suggests an efficient and comprehensive algorithm of the protection ratio derivation and illustrates some calculated results applicable to the initial planning of frequency coordination in the fixed wireless access networks. The net filter discrimination associated with Tx spectrum mask and overall Rx filter characteristic has been also examined to show the effect of the adjacent channel interference. The calculations for co-channel and adjacent channel protection ratios are performed for the current microwave frequency band of 6.7 GHz including Tx spectrum mask and Rx filter response. According to results, fade margin and co-channel protection ratio reveal 41.4 and 75.2 dB, respectively, for 64-QAM and 60 km at BER $10^{-6}$. It is shown that the net filter discrimination with 40 MHz channel bandwidth provides 28.9 dB at the first adjacent channel, which yields 46.3 dB of adjacent channel protection ratio. In addition, the protection ratio of 38 GHz radio relay system is also reviewed for millimeter wave band applications. The proposed method gives some advantages of an easy and systematic extension for protection ratio calculation and is also applied to frequency coordination in fixed millimeter wave networks.

Overhead Reduction Methods in Communication between 6LoWPAN and External Node (6LoWPAN 노드와 외부 노드의 통신 시에 오버헤드 감소 방법)

  • Choi, Dae-In;Enkhzul, Doopalam;Park, Jong-Tak;Kahng, Hyun-K.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.437-442
    • /
    • 2011
  • As an Internet Engineering Task Force (IETF) Working Group, 6LoWPAN is standardizing the IPv6 packet transfer technology in accordance with IEEE 802.15.4. It has completed two Request for Comments (RFC) documents, one of which, RFC 4944, addresses fragmentation, reassembly, and header compression technologies. In this paper, a communication mechanism is proposed to provide efficient communication between 6LoWPAN and external nodes. In this mechanism, the gateway between 6LoWPAN and external networks serves as the proxy gateway between nodes. The simulation was conducted using QualNet to compare the performance of the proposed mechanism and the existing RFC 4944 method. The comparative analysis of the proposed mechanism and the existing method showed that the proposed method performed better.

The Effect of Type of Input Image on Accuracy in Classification Using Convolutional Neural Network Model (컨볼루션 신경망 모델을 이용한 분류에서 입력 영상의 종류가 정확도에 미치는 영향)

  • Kim, Min Jeong;Kim, Jung Hun;Park, Ji Eun;Jeong, Woo Yeon;Lee, Jong Min
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.167-174
    • /
    • 2021
  • The purpose of this study is to classify TIFF images, PNG images, and JPEG images using deep learning, and to compare the accuracy by verifying the classification performance. The TIFF, PNG, and JPEG images converted from chest X-ray DICOM images were applied to five deep neural network models performed in image recognition and classification to compare classification performance. The data consisted of a total of 4,000 X-ray images, which were converted from DICOM images into 16-bit TIFF images and 8-bit PNG and JPEG images. The learning models are CNN models - VGG16, ResNet50, InceptionV3, DenseNet121, and EfficientNetB0. The accuracy of the five convolutional neural network models of TIFF images is 99.86%, 99.86%, 99.99%, 100%, and 99.89%. The accuracy of PNG images is 99.88%, 100%, 99.97%, 99.87%, and 100%. The accuracy of JPEG images is 100%, 100%, 99.96%, 99.89%, and 100%. Validation of classification performance using test data showed 100% in accuracy, precision, recall and F1 score. Our classification results show that when DICOM images are converted to TIFF, PNG, and JPEG images and learned through preprocessing, the learning works well in all formats. In medical imaging research using deep learning, the classification performance is not affected by converting DICOM images into any format.

Concurrent operation of round beam and flat beam in a low-emittance storage ring

  • J. Lee;S. Ahn;J. Ko;B. Oh;G. Jang;Y.D. Yoon;S. Shin;J.-H.Kim;M. Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3866-3873
    • /
    • 2023
  • In 4th-generation storage rings, whether to operate the beam as round or flat is a critical question. A round beam has equal horizontal and vertical emittances, and is an efficient solution to reduce strong intra-beam scattering effects and lengthen the Touschek lifetimes, but a flat beam produces a brighter photon beam than a round beam. To provide both beams concurrently rather than bifurcating the beam time, this paper presents the exploitation of beam dynamics and the cutting-edge fast pulser that supports concurrent operation of round beam and flat beam.

Design of the LSF Parameter Quantizer for the Wideband Speech Codec (광대역 음성 부호화기용 선 스펙트럼 주파수 계수 양자화기 설계)

  • 지상현;강상원;윤병식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.29-34
    • /
    • 2001
  • In this paper, we designed an LSF coefficient quantizer of the wideband speech codec that can produce high quality speech service. For the efficient LSF coefficient quantizer, the interframe correlation was used. Also we separately quantized the LSF coefficients with high and low interframe correlation. Predictive pyramid vector quantizer (PVQ) was used for quantizing the LSF coefficients with high interframe correlation, and PVQ was used for quantizing the LSF coefficients with low interframe correlation. Experiments show that the proposed UF quantizer can quantize LSF information in 40 bits/frame, with an average spectral distortion (SD) of 1 dB and less than 3.87% frames having SD greater than 2 dB.

  • PDF