• Title/Summary/Keyword: Efficient Network selection algorithm

Search Result 132, Processing Time 0.026 seconds

A Token Based Clustering Algorithm Considering Uniform Density Cluster in Wireless Sensor Networks (무선 센서 네트워크에서 균등한 클러스터 밀도를 고려한 토큰 기반의 클러스터링 알고리즘)

  • Lee, Hyun-Seok;Heo, Jeong-Seok
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.291-298
    • /
    • 2010
  • In wireless sensor networks, energy is the most important consideration because the lifetime of the sensor node is limited by battery. The clustering is the one of methods used to manage network energy consumption efficiently and LEACH(Low-Energy Adaptive Clustering Hierarchy) is one of the most famous clustering algorithms. LEACH utilizes randomized rotation of cluster-head to evenly distribute the energy load among the sensor nodes in the network. The random selection method of cluster-head does not guarantee the number of cluster-heads produced in each round to be equal to expected optimal value. And, the cluster head in a high-density cluster has an overload condition. In this paper, we proposed both a token based cluster-head selection algorithm for guarantee the number of cluster-heads and a cluster selection algorithm for uniform-density cluster. Through simulation, it is shown that the proposed algorithm improve the network lifetime about 9.3% better than LEACH.

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Priority Based Interface Selection for Overlaying Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1009-1017
    • /
    • 2010
  • Offering of different attractive opportunities by different wireless technologies trends the convergence of heterogeneous networks for the future wireless communication system. To make a seamless handover among the heterogeneous networks, the optimization of the power consumption, and optimal selection of interface are the challenging issues. The access of multi interfaces simultaneously reduces the handover latency and data loss in heterogeneous handover. The mobile node (MN) maintains one interface connection while other interface is used for handover process. However, it causes much battery power consumption. In this paper we propose an efficient interface selection scheme including interface selection algorithms, interface selection procedures considering battery power consumption and user mobility with other existing parameters for overlaying networks. We also propose a priority based network selection scheme according to the service types. MN‘s battery power level, provision of QoS/QoE and our proposed priority parameters are considered as more important parameters for our interface selection algorithm. The performances of the proposed scheme are verified using numerical analysis.

Energy Improvement of WSN Using The Stochastic Cluster Head Selection (확률적 클러스터 헤드 선출 방법을 이용한 WSN 에너지 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.125-129
    • /
    • 2015
  • The most important factor within the wireless sensor network is to have effective network usage and increase the lifetime of the individual nodes in order to operate the wireless network more efficiently. Therefore, many routing protocols have been developed. The LEACH protocol presented by Wendi Heinzelman, especially well known as a simple and efficient clustering based routing protocol. However, because LEACH protocol in an irregular network is the total data throughput efficiency dropped, the stability of the cluster is declined. Therefore, to increase the stability of the cluster head, in this paper, it proposes a stochastic cluster head selection method for improving the LEACH protocol. To this end, it proposes a SH-LEACH(Stochastic Cluster Head Selection Method-LEACH) that it is combined to the HEED and LEACH protocol and the proposed algorithm is verified through the simulation.

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Network Efficient Multi-metric Routing Algorithm for QoS Requiring Application (QoS 응용 서비스를 위한 효율적인 다중 메트릭 라우팅 방안)

  • 전한얼;김성대;이재용;김동연;김영준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1055-1063
    • /
    • 2002
  • In this paper, we have studied path selection problem using multiple metric. Current Internet selects a path using only one metric. The path selected by one metric is a best-effort service that can satisfy one requirements. In order to satisfy a call with various Qualify-of-Service(QoS) requirements, the path must satisfy multiple constraints. In many cases, path selection is NP-complete. The proposed algorithm is widest-least cost routing algorithm that selects a path based on cost metric which is basically a delay metric influenced by the network status. The proposed algorithm is a multiple metric path selection algorithm that has traffic distribution ability to select shortest path when network load is light and move traffic to other alternate path when the link load is high. We have compared the results with other routing algorithms.

Relay node selection algorithm consuming minimum power of MIMO integrated MANET

  • Chowdhuri, Swati;Banerjee, Pranab;Chaudhuri, Sheli Sinha
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.191-200
    • /
    • 2018
  • Establishment of an efficient routing technique in multiple-input-multiple-output (MIMO) based mobile ad hoc network (MANET) is a new challenge in wireless communication system to communicate in a complex terrain where permanent infrastructure network implementation is not possible. Due to limited power of mobile nodes, a minimum power consumed routing (MPCR) algorithm is developed which is an integration of cooperative transmission process. This algorithm select relay node and support short distance communication. The performance analysis of proposed routing algorithm increased signal to noise interference ratio (SNIR) resulting effect of cooperative transmission. Finally performance analysis of the proposed algorithm is verified with simulated result.

Channel Prediction-Based Channel Allocation Scheme for Multichannel Cognitive Radio Networks

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • Cognitive radio (CR) has been proposed to solve the spectrum utilization problem by dynamically exploiting the unused spectrum. In CR networks, a spectrum selection scheme is an important process to efficiently exploit the spectrum holes, and an efficient channel allocation scheme must be designed to minimize interference to the primary network as well as to achieve better spectrum utilization. In this paper, we propose a multichannel selection algorithm that uses spectrum hole prediction to limit the interference to the primary network and to exploit channel characteristics in order to enhance channel utilization. The proposed scheme considers both the interference length and the channel capacity to limit the interference to primary users and to enhance system performance. By using the proposed scheme, channel utilization is improved whereas the system limits the collision rate of the CR packets.

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm (병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.953-959
    • /
    • 2012
  • There are a number of idle nodes in sensor networks, these can act as detector nodes for anomaly detection in the network. For detecting node selection problem modeled as optimization equation, the conventional method using centralized genetic algorithm was evaluated. In this paper, a method to improve the convergence of the optimal value, while improving energy efficiency as a method of considering the characteristics of the network topology using parallel genetic algorithm is proposed. Through simulation, the proposed method compared with the conventional approaches to the convergence of the optimal value was improved and was found to be energy efficient.