• Title/Summary/Keyword: Efficiency temperature coefficient

Search Result 274, Processing Time 0.03 seconds

A Study on Cooling Characteristics of the LED Lamp Heat Sink for Automobile by Forced Convection (강제대류에 의한 자동차용 램프 방열판의 냉각 특성에 LED 관한 연구)

  • Yang, Ho-Dong;Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.117-123
    • /
    • 2018
  • Automotive headlamps have been continuously developed as one of the most important devices for securing the driver's view, and the LED lamps are getting popular in recent years. However, in case of the LED lamps, because the heat generated by the LED lamps are too high, it shorten the product life and lower the LED efficiency. Therefore, this study was investigated the cooling characteristics of the LED lamp heat sink for automobile by forced convection for LED heat generation control. In order to analyze the cooling characteristics of the heat sink, the temperature distribution results were investigated through the experiment and computational analysis under the increase of the air flow velocity, and the convective heat transfer coefficient was obtained. Also, convective heat transfer coefficient was calculated by the theoretical formula under the same condition and compared with experimental and computational results. From the result of this study, as the air flow velocity around the heat sink fins increased, the convective heat transfer coefficient significantly increased, confirming the improvement in the cooling effect.

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber (진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구)

  • Park, Sang Jun;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.567-572
    • /
    • 2013
  • In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.

Design of Ultrasonic Nebulizer for Inhalation Toxicology Study of Cadmium with Application of Engineering Methodology and Performance Evaluation with Light-Scattering Photometer (공학적 기법을 응용한 카드뮴의 흡입독성 연구를 위한 초음파 네뷸라이져의 설계 그리고 광산란 광도계를 이용한 성능평가)

  • Jeung Jae Yeal;Milton Donald K.;Kim Tae Hyeung;Lee Jong Young;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.464-471
    • /
    • 2002
  • Author applied several engineering methodologies to classical ultrasonic nebulizer to cope with it's demerits. After several trials and errors, we got the several meaningful results. To evaluate the modified ultrasonic nebulizer for inhalation toxicology of cadmium, author used light-scattering photometer. This paper is the one part of inhalation exposure systems for inhalation toxicology study of cadmium. According to the testing conditions, source temperature 50℃ and inlet-duct band temperature 150℃, aerosol generation results for sodium chloride and cadmium chloride were as followings: Coefficients of variation(CV) of sodium chloride and cadmium chloride for repeated trials were 3.38 and 4.77 for 10g, 2.47 and 5.02 for 5g, and 4.70 and 2.98 for 2.5g. All the CVs were within 10% of acceptance variability. Count Per Minute(CPM) changes of NaCl and CdCl₂ for 5 repeated trials were similar. CPM ratios of CdCl₂/NaCl were 1.13 for 10g, 0.76 for 5g, and 1.06 for 2.5g. Relative aerosol generation of cadmium chloride to sodium chloride was the highest in 10g. Efficiency increases of 24.50% for 5g NaCl, 14.91 % for 2.5g NaCl, and 16.48% for 2.5g CdCl₂ with respect to theoretical efficiency were observed but 0.04% efficiency decrease was observed in 5g CdC₂. According to the modifications of source temperature(20, 50, 70℃) and inlet-duct band temperature(20, 50, 100, 150, 200℃), aerosol generation results for NaCl and CdCl₂ were as followings: CPM trends for each quantity excepting 10g NaCl in inlet-duct band temperature 200℃ were similar, and the highest CPM was observed in source temperature 70℃ to each inlet-duct band temperature. The highest CPMs to 10, 5, and 2.5g NaCl were observed in source temperature 70℃ and inlet-duct band temperature 20℃. Aerosol generation of cadmium chloride was increased with the higher source temperature, excepting inlet-duct band temperature 200℃. The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this trend was similar to NaCl aerosol generation The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this result was similar to NaCl aerosol generation. Observed efficiencies of 5 and 2.5g NaCl were similar to ifs theoretical efficiency but -3.08% efficiency decrease of 5g CdCl₂, 17.47% efficiency increase of 2.5g CdCl₂ were observed. CPM ratio of CdCl₂/NaCl of 10g was different to 5 and 2.5g, and 2.5g ratio was higher than 5g ratio. In conclusion, to get maximum aerosol generation for NaCl and CdCl₂ will be the conditions that set the appropriate inlet-duct band temperature for each materials and increase the source temperature. Sodium chloride can be used to evaluate the performance and predict the concentration for cadmium aerosol in aerosol generator and inhalation exposure system.

Mechanical Properties Analysis of Epoxy and Polyurethane Adhesive for Accurate Structural Analysis of LNG Cargo Hold (LNG 화물창 정밀 구조해석을 위한 에폭시와 폴리우레탄 접착제 기계적 물성치 분석)

  • Jeong, Yong-Cheol;Jeong, Yeon-Jae;Kim, Jeong-Dae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.66-72
    • /
    • 2021
  • As the demand for natural gas that satisfies environmental regulations increases, the quantities of natural gas cargo that carrier can load is also increasing. Natural gas is transported in a liquefied state at -163 ℃ to increase loading efficiency. Among several LNG CCS types, MARK-III types are generally adopted in terms of loading efficiency. The secondary barrier adhesives of the MARK-III, nevertheless, is subjected to tensile stress due to thermal contraction and tension in the environment. In terms of these reasons, local analysis of the adhesive to evaluate the stress state must be carried out. According to previous studies, local analysis is unavailable since material properties for secondary barrier adhesives have not been reported. Thus, in this study, the cryogenic tensile test and coefficient of thermal expansion of epoxy and polyurethane (PU15, PU45), which are most widely used at cryogenic temperatures, were experimentally analyzed. At cryogenic temperature, the mechanical behavior of the polyurethane adhesive was better than epoxy of the adhesive. the joint of FSB and epoxy adhesive of the secondary barrier has the maximum coefficient of thermal expansion difference at 25 ℃ and minimum at -150 ℃, respectively.

A Study on the Thermal Characteristics of Finned-tube Heat Exchanger by Using the Liquid Crystal Technique (액정법을 이용한 휜-관 열교환기 휜의 열적 특성에 관한 연구)

  • 강희찬;김무환;김명수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.414-421
    • /
    • 2000
  • This study was discussed about the thermal characteristics of finned tube heat exchanger having two row used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured and investigated for the 3 times models of plain fin. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

Measurement of the Thermal Characteristics of Finned-tube Heat Exchanger Fin by Using the Liquid Crystal Technique

  • Kang, Hie-Chan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.28-35
    • /
    • 2001
  • This study deals with the thermal characteristics of finned-tube heat exchanger having two rows used in the air-conditioning application. Pressure drop and heat transfer coefficient were measured by using the three times models of plain fin and compared with the theory. Also the temperature distribution and heat conduction in the fin was measured by using the liquid crystal method. The surface temperature of rear row was nearly constant, and heat conduction in the fin was stronger near the front row than the rear row.

  • PDF

Experimental Investigation of Laser Spot Welding of Ni and Au-Sn-Ni Alloy

  • Lee, Dongkyoung
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • Many microelectronic devices are miniaturizing the capacitance density and the size of the capacitor. Along with this miniaturization of electronic circuits, tantalum (Ta) capacitors have been on the market due to its large demands worldwide and advantages such as high volumetric efficiency, low temperature coefficient of capacitance, high stability and reliability. During a tantalum capacitor manufacturing process, arc welding has been used to weld base frame and sub frame. This arc welding may have limitations since the downsizing of the weldment depends on the size of welding electrode and the contact time may prevent from improving productivity. Therefore, to solve these problems, this study applies laser spot welding to weld nickel (Ni) and Au-Sn-Ni alloy using CW IR fiber laser with lap joint geometry. All laser parameters are fixed and the only control variable is laser irradiance time. Four different shapes, such as no melting upper workpiece, asymmetric spherical-shaped weldment, symmetric weldment, and, excessive weldment, are observed. This shape may be due to different temperature distribution and flow pattern during the laser spot cutting.

Heat Storage in a packed Bed (충전층내에서 축열에 따른 열전달)

  • Choi, Kyung-Jin;Ro, Sung-Tack
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1978
  • An experiment has been performed of find a temperature distribution of the circulating fluid in a packed bed thermal storage system when the inlet fluid temperature is constant. The thermal storage system is a specific-heat type in which the circulating fluid, hot air, exchanges heat directly with the heat storage materials, glass balls, in a heat storage bin. An empirical equation which includes two dimensionless variables $t^*\;and\;T_f^*$, is obtained. Also, heat storage efficiency and heat storage capacity are calculated from this equation, The heat transfer coefficient calculated by the suggested equation was compared with the value determined by the existing empirical equation.

  • PDF

Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids (나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구)

  • Lee, Seung-Hyun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.799-805
    • /
    • 2013
  • An analytical study is conducted to assess the efficiency of a flat-plate solar collector using nanofluids. The nondimensionalized 2D heat diffusion equation is solved by assuming a wavelength-independent extinction coefficient and intensity to obtain the analytical solution of the temperature distribution in the flat-plate solar collector. The dimensionless temperature distribution is investigated as functions of the volume fraction of the nanofluids, magnitude of heat loss, and collector's depth based on the analytical solution when using water-based single-walled carbon nanohorn (SWCNH) nanofluids as a working fluid. Finally, the efficiency of the flat-plate solar collector using the nanofluids is predicted and compared with that of the conventional solar collector. The results indicate that the efficiency of the nanofluid solar collector is better than that of the conventional solar collector under specific geometrical conditions.

A Study on Numerical Thermo-Mechanical Analysis for Aluminum 6061 Friction Stir Welding (전산 열.구조해석에 의한 알루미늄 6061 마찰교반용접 특성 연구)

  • Park, Chan-Woo;Paeng, Jin-Gi;Ok, Ju-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.632-639
    • /
    • 2012
  • A fully coupled thermo-mechanical model is adopted to study the temperature distribution and the material deformation in friction stir welding(FSW) process. Rotational speed is most important parameters in this research. Three dimension results under different process parameters were presented. Result indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The maximum temperature can be increased with increasing the tool angular velocity, rpm in the current numerical modeling. In this research ABAQUS Ver.6.7 is to analyze a fully coupled thermo-mechanical model. ALE(Arbitrary Lagrangian-Eulerian) finite element formulation is used for the large deformation in FSW process and using the Mass scaling for the analysis time efficiency.