• Title/Summary/Keyword: Efficiency increase

Search Result 8,524, Processing Time 0.04 seconds

Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model (Takahashi 구름모형에서의 얼음입자 충돌효율 개선)

  • Lee, Hannah;Yum, Seong Soo
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.

Analysis of Management Efficiency for Abalone Seed Producer based on DEA Approach (DEA를 이용한 전복종자 생산업체의 경영효율성 분석)

  • Oh, Ye-Jin;Lee, Nam-Su;Kim, Dae-Young
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • The production of abalone seed has grown and been specialized since the 2000s with the growth of the abalone farming industry. Despite the increase in the production of abalone seeds, the sales volume of abalone seeds remained flat and competition among producers increased. This paper will analyze the management efficiency of abalone seed production fishery to diagnose the management status and improve the abalone seed production efficiency. In addition, this study is the result of the basic research on the abalone seed industry and it is meaningful to prepare a platform for further research since the management status survey and the management efficiency survey of abalone seed production fishery have not been conducted until now. The data on the farmed fish prices of abalone seeds were collected from surveys of sample fish as part of the fish seed observation project conducted by the Fisheries Outlook Center (FOC) of Korea Maritime and Fisheries Development Institute (KMI). Management efficiency analysis utilizes DEA (Data Envelopment Analysis) model. The DEA model was analyzed by classifying into CCR (Super-CCR), BCC, and SBM (Super-SBM) models according to the assumptions taking into account the characteristics of the industry. The slack considered in the SBM model was judged as possible decreases in input variables and increase in output variables. The average efficiency from the CCR model was analyzed to be 69%. The BCC model was classified into input and output orientations, and the average efficiency was 79% and 75%, respectively. There were seven production fisheries with an SE value of 1 or more, which remained unchanged in terms of size and could be benchmarked. The average efficiency of the SBM model was 59% for CRS and 66% for VRS. Under the VRS assumptions, the variable increase/decrease efficiency analysis shows that labor costs can be reduced by 37.3%, facility capacity by 18.8%, and operating costs by 8.5%. In order to improve management efficiency, Wando needs to reduce labor and management costs. In Jindo region, sales increase as well as labor cost reduction is urgent. In other regions, reduced facilities and increased sales are recommended.

Effects of Operating Parameters on Toluene Removal in Dielectric Barrier Discharge Process (무성방전내에서 톨루엔 제거에 미치는 운전변수의 영향)

  • 정재우;이용환;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.173-182
    • /
    • 2002
  • We investigated the effects of operating variables, such as electrical. reactor and gas parameters on toluene removal and discharge property in the dielectric barrier discharge (DBD) process. The toluene removal was initiated with the energy transfer to the reactor by loading of voltages higher than the discharge onset value. The energy transfer and toluene removal increased with the applied voltage. Higher removal rate was observed with smooth surface electrode despite of lower energy transfer compared with the coarse electrode, because more uniform discharge can be obtained on smooth surface state. The decrease of dielectric material thickness enhanced the removal efficiency by increasing the discharge potential. The toluene removal efficiency decreased with the increase of the inlet concentration. The increase of gas retention time enhanced the removal efficiency by the increase of energy density. The oxygen and humidity contents seem to exert significant influences on the toluene removal by dominating the generation of electrons, ions, and radicals which are key factors in the removal mechanism.

A Development of Efficient Power Conversion Technology for Reduction of Power Equipment (전원설비 저감을 위한 고효율 전력변환기술 개발)

  • Koo, Myoung-Wan;Lee, Woo-Won;Lim, Kye-Young
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.142-144
    • /
    • 2008
  • The Former High Efficiency Inverter(the power restoration process) system process has advantage which is the energy reduction rather than the Former Inverter(the resistence damping process), However, under repair and remodeling, the power facilities capacity is not easy to increase that the former High Efficiency Inverter needs to increase the Power Facilities Capacity of 20~30% than the Inverter(the resistence damping process) so Therefore we are going to suggest the system which is not going to make an increase the power facilities capacity and is applicable the High Efficiency Inverter.

  • PDF

EFFECT OF DIFFERENT DIETARY PROTEIN AND ENERGY LEVELS ON THE PERFORMANCES OF STARCROSS PULLETS

  • Uddin, M. Salah;Tareque, A.M.M.;Howlider, M.A.R.;Khan, M. Jasimuddin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.361-368
    • /
    • 1991
  • In two experiments 640 starcross replacement pullets between 25 and 154 days of age were fed ad libitum on either of 16 diets formed by the combination of $4CP{\times}4ME$ levels to study the interaction of CP and ME on growth performances. In both experiments, feed intake decreased, but protein intake, energy intake, live weight gain and feed conversion efficiency increased and sexual maturity hastened with the increase of dietary protein and/or energy level. The protein conversion efficiency decreased with the increase of dietary protein level. The energy conversion efficiency, however, did not show any relationship with dietary energy level. There was a greater improvement of growth performance due to simultaneous increase of dietary protein and energy level than that of increasing protein or energy alone.

Effect of Initial Track Tension on the Tractive Performance of Tracked Vehicles (궤도의 초기 장력이 궤도 차량의 견인 성능에 미치는 영향)

  • 김채주;김경욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • A computer program was developed to simulate effect of the initial track tension on the tractive performance of tracked vehicles. The performance was evaluated in terms of drawbar pull, motion resistance, tractive coefficient and tractive efficiency. Results of the simulation showed that increase in track tension decreases the sinkage and mean maximum pressure in clay, making the ground pressure distribution more uniform. This tendency became more evident when the number of roadwheels increased. However, such change in MMPs was negligible in firm soils. Motion resistance was also decreased with increase in track tension and the number of roadwheels. Under weak soil conditions, tractive coefficient and efficiency increased generally as the track tension increased for a slip range of 10∼30%. For slippage less than 3∼4%, however, the tractive coefficient decreased with increase in track tension. In general, it was known that increasing track tension improves tractive performance in weak soil conditions. However, high track tension can reduce efficiency due to the increment of internal motion resistance caused by increased track tension.

  • PDF

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble (머신러닝 앙상블을 활용한 공압기의 전력 효율 최적화 시뮬레이션 )

  • Juhyeon Kim;Moonsoo Jang;Jieun Choi;Yoseob Heo;Hyunsang Chung;Soyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1205-1213
    • /
    • 2023
  • This study delves into methods for enhancing the power efficiency of air compressor systems, with the primary objective of significantly impacting industrial energy consumption and environmental preservation. The paper scrutinizes Shinhan Airro Co., Ltd.'s power efficiency optimization technology and employs machine learning ensemble models to simulate power efficiency optimization. The results indicate that Shinhan Airro's optimization system led to a notable 23.5% increase in power efficiency. Nonetheless, the study's simulations, utilizing machine learning ensemble techniques, reveal the potential for a further 51.3% increase in power efficiency. By continually exploring and advancing these methodologies, this research introduces a practical approach for identifying optimization points through data-driven simulations using machine learning ensembles.