• Title/Summary/Keyword: Efficiency Standards

Search Result 999, Processing Time 0.026 seconds

Prediction on the Efficiency of Coated Tool Using Taguchi Design and Neural Network (다꾸지 기법 및 신경망을 이용하여 코팅공구의 성능예측 연구)

  • Choi Gwang Jin;Lee Wi Ro;Choi Suk Woo;Paik Young Nam
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.3
    • /
    • pp.284-289
    • /
    • 2003
  • In this study, the prediction on the quality of tools after coating process has been investigated. Under different coating conditions, cutting resistances have been obtained and analyzed with a tool dynamometer to provide optimized coating conditions. The optimized coating conditions Lhave been computed with the most effective factors found by S/N ratio of Taguchi method. To evaluate the influence of the factors on cutting efficiency through the minimum of number of experiment times, the way of neural network design using Taguchi method has been employed.

A "Fabric-First" Approach to Sustainable Tall Building Design

  • Oldfield, Philip
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • This research suggests the most effective way for improving energy efficiency in tall buildings is a "fabric-first" approach. This involves optimizing the performance of the building form and envelope as a first priority, with additional technologies a secondary consideration. The paper explores a specific fabric-first energy standard known as "Passivhaus". Buildings that meet this standard typically use 75% less heating and cooling. The results show tall buildings have an intrinsic advantage in achieving Passivhaus performance, as compared to low-rise buildings, due to their compact form, minimizing heat loss. This means high-rises can meet Passivhaus energy standards with double-glazing and moderate levels of insulation, as compared to other typologies where triple-glazing and super-insulation are commonplace. However, the author also suggests that designers need to develop strategies to minimize overheating in Passivhaus high-rises, and reduce the quantity of glazing typical in high-rise residential buildings, to improve their energy efficiency.

Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis

  • Kwon, Hae-Myun;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.297-301
    • /
    • 2009
  • We have developed the yttrium oxide (YNP) or ytterbium oxide (YbNP) nanoparticle/polymer matrices for the size-dependent separation of DNA ranging from 100 bp to 9,000 bp. High separation efficiency (> $10^6$ plates/m) and the baseline resolution for various DNA standards (100 bp, 500 bp, and 1 kbp DNA ladder) were obtained in 10 min with these matrices. The effects of concentrations of both polyethylene oxide (PEO) and nanoparticles were investigated and the highest performance was obtained at 0.02% PEO with 0.02% YNP or YbNP. Similar sieving power for both YNP and YbNP matrices was observed probably due to the similar sizes of nanoparticles, resulting in the formation of comparable sieving networks for DNA separation. For the reduction of electrosmotic flow, either dynamic or permanent coating of the capillary inner wall was compared and it turned out that PEO was superior to polyvinylpyrrolidone (PVP) or polyacrylamide (PAA) for better separation efficiency.

Study on the Satisfaction Analysis for Development of Construction Estimating Manager based on 3D Data (BIM기반 건축적산 매뉴얼 개발을 위한 만족도 분석에 관한 연구)

  • Choi, Chang-Hoon;Lee, Junbok;Han, Choong-Hee;Soh, Ji-Yoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.222-223
    • /
    • 2014
  • According to the improvement of IT technology, an enhanced efficiency of management system in the construction industry is expected since a quotation system with BIM (Building Information Modeling) technique effectively estimates construction materials. For an enhanced efficiency of management system, related guidelines, standards, and manuals based on BIM are required, but the lack of this information causes difficulty to utilize in practice. In the paper, the satisfaction analysis was performed in order to promote the completeness of construction estimating manager that can be presented criteria and details of BIM-based quantity-takeoff, classification criteria.

  • PDF

An Efficiency Analysis for Total Work Scheduling (총합적 작업일정계획의 합리화 및 효율분석)

  • 신현표
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.19-26
    • /
    • 1987
  • Since many small and medium sized enterprises have lack of funds to install the full scale Computer Aided Process Planning this study has been attempted to develop a part of computer generated production information system for a start. The system is programmed by DBASE III and BASIC languages for the IBM-PC competables for the sake of user's convenience. The system consisted of four major parts. The first part is a computerized work measurement system for applying WF predetermined time standards. The second part is a computerized forecasting and loading system for applying various statistical techniques. The third part is a GT scheduling system programmed by BASIC for applying heuristic scheduling method. Finally, the last part is a simulation system for GT scheduling efficiency test which is programmed by SIMAN simulation language.

  • PDF

Practical Calculation of Iron Loss for Cylindrical Linear Machine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1901-1907
    • /
    • 2018
  • This paper is a study for accurate iron loss calculation of a cylindrical linear machine for free piston engine. This study presents that it is possible to accurately predict power loss in ferromagnetic laminations under magnetic flux by specially considering the dependence of hysteresis, classical, and excess loss components on the magnetic induction derivative. Significant iron loss in the armature core will not only compromise the machine efficiency, but may also result in excessive heating, which could lead to irreversible deterioration in the machine performance. Thus, correct prediction of power losses under a distorted flux waveform is therefore an important prerequisite to machine design, particularly when dealing with large apparatus where stringent efficiency standards are required. Finally, it will be discussed about the iron loss in various materials of cylindrical linear electric machine by geometric and electrical parameters. It will give elaborate information about the perfect design and design rules of cylindrical linear machine and in parallel tools for the calculation, simulation and design will be available.

The study for two phase SRM with self starting capability (자기동이 가능한 2상 SRM에 관한 연구)

  • Oh, Seok-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.226-228
    • /
    • 2007
  • SRM drive systems are designed to meet operating standards such as low cost, constant torque independent of rotor position, a desired operating speed range, high efficiency, and high performance. In applications using small motors, low cost and high performance with self-starting capabilities are highly desired. This paper discusses a novel two phase SRM (TPSRM) that has high performance characteristics with self-starting capability, low manufacturing cost with a two phase inverter and simple magnetic structure, and high efficiency. The principle of operation, analysis, and simulation for design are presented. The machine design is verified using finite element analysis (FEA) software. Analysis and simulation results are given to validate the TPSRM design.

  • PDF

System design of an air-cooled 3-stage reciprocating air compressor and performance testing (공랭식 3단 왕복동 공기압축기의 시스템 설계 및 성능시험)

  • Lee, An-Seong;Kim, Yeong-Cheol;Jeong, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1380-1391
    • /
    • 1997
  • A 150 m$^{3}$/hr, 30 kg/cm$^{2}$, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially the volumetric efficiency. Temperature and stress analyses of the cylinder are performed using FEM modelings. The dynamics of valve system is analyzed and stress at the valve seat due to valve impact is evaluated. To reduce friction loss and wear at the compressor engine system, tribological design practices are suggested. Fin-type coolers are designed to dissipate generated compression heat at each stage. Finally, a prototype is manufactured and performance test is carried out utilizing an air tank. Performance results are compared to the design targets, other foreign specifications, and some quality standards.

Consideration of Heat Recovery Ventilator from Ventilating Standpoint (환기관점에서 본 열교환 환기유니트)

  • Song, Jun-Won;Kang, Il-Kyung;Kim, Tae-Hee;Shin, Yong-Sup;Park, Jae-Sung;Choi, Won-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.417-422
    • /
    • 2006
  • On trends of 'well-being', heat recovery ventilators(HRV) are recently installed in high rise buildings. HRV is not energy saving instrument but ventilating one. But many people have not been aware of the accurate fact. In this study, performances of HRV are tested under foreign and domestic standards. Especially air-tightness is measured three times by using gas concentration method and pressing equipment. Wet effective ventilating air volume is acquired by solving gas concentration equations. After research air-tightness and effective ventilating air volume must be more focused on than heat transfer efficiency to select the optimal HRV. Heat transfer efficiency must be adjusted by air-tightness results.

  • PDF

Relative SATD-based Minimum Risk Bayesian Framework for Fast Intra Decision of HEVC

  • Gwon, Daehyeok;Choi, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.385-405
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) enables significantly improved compression performance relative to existing standards. However, the advance also requires high computational complexity. To accelerate the intra prediction mode decision, a minimum risk Bayesian classification framework is introduced. The classifier selects a small number of candidate modes to be evaluated by a rate-distortion optimization process using the sum of absolute Hadamard transformed difference (SATD). Moreover, the proposed method provides a loss factor that is a good trade-off model between computational complexity and coding efficiency. Experimental results show that the proposed method achieves a 31.54% average reduction in the encoding run time with a negligible coding loss of 0.93% BD-rate relative to HEVC test model 16.6 for the Intra_Main common test condition.