• Title/Summary/Keyword: Efficiency Elevation

Search Result 208, Processing Time 0.021 seconds

Study of Operation Rules for Flood Control to Seomjin River Dam Using HEC-ResSim (HEC-ResSim을 이용한 섬진강댐의 홍수조절 운영룰에 관한 연구)

  • Ahn, Jung Min;Lyu, Siwan;Kim, Joo Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.93-101
    • /
    • 2012
  • HEC-ResSim, reservoir operation model, is applied to Seomjin river dam in order to establish a rational method for water supply and flood control by dam operation. In order to minimize downstream flood damage for Seomjin river basin and adjacent regions, reservoir routing is applied to several frequency flood events within the framework of rainy seasonal operation rule and then the characteristics change of hydrological behavior for the downstream of study area is investigated in depth. Its quantitative efficiency and estimation method is evaluated on the basis of the adjustment scheme of conservation water surface elevation for flood control and water secure; reservoir routing considering preliminary release and variable restricted water level; and its effect to water supply; and downstream flood-duration analysis.

Development of Optimal Control of Heliostat System Using Configuration Factor and Solar Tracking Device (형상계수와 태양추적장치를 이용한 헬리오스타트 제어 시스템 개발)

  • Lee, Dong Il;Jeon, Woo Jin;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1177-1183
    • /
    • 2012
  • This study aims to develop a system that maximizes the radiative heat transfer from the heliostat to the receiver by using the configuration factor and a solar tracking device. As the heat transfer from the heliostat to the receiver is delivered by solar radiation, the configuration factor commonly utilized for radiation is applied to control the heliostat. Tracking the sun and calculating its position are possible by using an illuminance sensor (CdS) and Simulink. By applying optimized algorithms programmed using Simulink that maximize the configuration factors among the heliostat, receiver, and sun in real time, the solar absorption efficiency of the receiver can be maximized. Simulations were performed on how to change the angle required to control the elevation and azimuthal angle of the heliostat during the daytime with respect to various distances.

Evaluation of HSPF Model Applicability for Runoff Estimation of 3 Sub-watershed in Namgang Dam Watershed (남강댐 상류 3개 소유역의 유출량 추정을 위한 HSPF 모형의 적용성 평가)

  • Kim, So Rae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 2018
  • The objective of this study was to evaluate the applicability of a HSPF (Hydrological Simulation Program-Fortran) model for runoff estimation in the Namgang dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input for the HSPF model, which was calibrated and validated using observed runoff data from 2004 to 2015 for three stations (Sancheong, Shinan, Changchon) in the study watershed. Parameters for runoff calibration were selected based on the user's manual and references, and parameter calibration was done by trial and error. The $R^2$ (determination coefficient), RMSE (root-mean-square error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (relative mean absolute error) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within a ${\pm}5%$ error in Sancheong and Shinan, whereas there was a14% error in Changchon. The model performance criteria for calibration and validation showed that $R^2$ ranged from 0.80 to 0.92, RMSE was 2.33 to 2.39 mm/day, NSE was 0.71 to 0.85, and RMAE was 0.37 to 0.57 mm/day for daily runoff. Visual inspection showed that the simulated daily flow, monthly flow, and flow exceedance graph agreed well with observations for the Sancheong and Shinan stations, whereas the simulated flow was higher than observed at the Changchon station.

A Study on Three Dimensional Positioning of SPOT Satellite Imagery by Image Matching (영상정합에 의한 STOP 위성영상의 3차원 위치결정에 관한 연구)

  • 유복모;조기성;이현직;노도영
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.49-56
    • /
    • 1991
  • In this study, 3D positioning of CCT digital imagery was done by using a personal computer image processing method to increase the economic and time efficiency of SPOT satellite imagery. Image matching technique which applies statistical theories, was applied to acqusition of satellite imagery. The reliability of these coordinates was anlysed to presente a new algorithm for three dimensional positioning necessary in digital elevation modelling and orthophoto production. In acquiring image coordinates from CCT digital satellite imagery, accuracy of planimetric and height coordinates was improved by applying the image matching technique and it was found through analysis of correlation factors between sizes of target window that 19$\times$19 pixels was the most suitable size for image coordinate acquisition. From these results, it was able to present an algorithm about utility of digital imagery in the analysis of SPOT satellite data.

  • PDF

Graft Copolymerization of MMN4-Vinylpyridine onto Cotton Fiber (면섬유(綿纖維)에의 MMA/4-Vinylpyridine의 공(共)그라프트 중합(重合))

  • Bae, Hyun-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.347-358
    • /
    • 1993
  • Graft copolymerization of MMN4-VP onto cotton fiber using Ce(IV) salt as an initiator and triton X-100 as an emulsifier was performed under various polymerization conditions. In cograft polymerization, the polymeization behavior according to variation of 4-VP feed composition and the characteristics of MMA/4-VP graft polymer such as affinity for acid dye owing to cationization of cotton, antibacterial activity and thermal behavior were investigated. The results of this study were as follows : 1. While in copolymerization of MMA and 4-VP, 4-VP content in copolymer was more than that of monomer feed composition. 2. Increasing 4-VP content, graft yield was decreased, but graft efficiency was increased. In case of MMA/4-VP graft polymerization, the highest graft yield was obtained at higher CAN concentration than in MMA graft polymerization, the reason is that the behavior of 4-VP was disturbed by Ce(IV) sail 3. Elevation of temperature resulted in increase of graft yield and the apparent activation energy of MMA/4-VP graft polymerization was higher than that of MMA graft polymerization. 4. MMA/4-VP grafted cotton fiber showed affinity for acid dye, antibacterial activity and higher moisture regain than MMA grafted cotton fiber. MMA/4-VP grafted cotton fabric showed improvement of wrinkle recovery up to 40~50% graft yield and decreased thereafter. MMA/4-VP and MMA grafted cotton fabric did not showed significant difference in wrinkle recovery and stiffness.

  • PDF

Extraction of Three-dimensional Hybrid City Model based on Airborne LiDAR and GIS Data for Transportation Noise Mapping (교통소음지도 작성을 위한 3차원 도시모델 구축 : 항공 LiDAR와 GIS DB의 혼용 기반)

  • Park, Taeho;Chun, Bumseok;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.985-991
    • /
    • 2014
  • The combined method utilizing airborne LiDAR and GIS data is suggested to extract 3-dimensional hybrid city model including roads and buildings. Combining the two types of data is more efficient to estimate the elevations of various types of roads and buildings than using either LiDAR or GIS data only. This method is particularly useful to model the overlapped roads around the so called spaghetti junction. The preliminary model is constructed from the LiDAR data, which can give wrong information around the overlapped parts. And then, the erratic vertex points are detected by imposing maximum vertical grade allowable on the elevated roads. For the purpose of efficiency, the erratic vertex points are corrected through linear interpolation method. To avoid the erratic treatment of the LiDAR data on the facades of buildings 2 meter inner-buffer zone is proposed to efficiently estimate the height of a building. It is validated by the mean value(=5.26 %) of differences between estimated elevations on 2 m inner buffer zone and randomly observed building elevations.

On the Planning of Drainage Structures in Irrigation Channels. -Special Emphasis on the Drainage Inverted Siphon- (용수로상의 배수구조물계획에 대하여 -배수잠관을 중심으로-)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2078-2083
    • /
    • 1970
  • The purpose of this study is to give the data neccesary for improving the planning of drainage structures, specially inverted siphons, in irrigation channels. With the samples of 15 drainage inlets, one drainage flume, 16 drainage inverted siphons and 6 drainage culverts in the 3 lines of irrigation channel under Chong-Won Irrigation Association, author abtained the following results. 1. It is presumed that design drainage discharge should be determined with some additional reserves, on the basis of the maximum rainfall intensity in local area and the size of drainage area on the topographical map, avoiding the way of eye measure. 2. Location of drainage inlet should be kept away from the place where topography can make lots of wash load, but when unavoidably allowing the inflow into irrigation channel, wash load outlet with even the purpose of drainage, or drainage flume in stead of drainage inlet should be taken account of. 3. It is presumed that drainage flume may be the structure which can perform its function from a structural point of view as far as topography permits. 4. Drainage inverted siphon should be avoided at any place as much as possible; a) In case that location of the siphon would be permitted only at paddy field, drainage area hauing the amount of discharge which requires more than 90cm in diameter could only be allowed. b) In this case, crest elevation of the tank of both inlet and outlet, at least, should not be lower than the surface level of paddy field. c) As far as topography and stratum permit, ratio of depth of outlet tank to head drop should be decreased as much as possible so that discharging efficiency of wash load could increase. d) In case of avoiding the setting of the siphon, irrigation aqueduct, irrigation inverted siphon, or drainage flume should be recommended in accordance with topography. 5. Discharging capability of wash load by drainage culvert appeared to depend hardly upon the diameter of the culvert, but greatly upon the location, specially near village, for there stones and dirts dumped may considerably be piled up. So, a counter plan for that is required.

  • PDF

Evaluation of Applicability of SWAT-CUP Program for Hydrologic Parameter Calibration in Hardware Watershed (Hardware 유역의 수문매개변수 보정을 위한 SWAT-CUP 프로그램의 적용성 평가)

  • Sang Min, Kim
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.63-70
    • /
    • 2017
  • The purpose of this study was to calibrate the hydrologic parameters of SWAT model and analyze the daily runoff for the study watershed using SWAT-CUP. The Hardware watershed is located in Virginia, USA. The watershed area is $356.15km^2$, and the land use accounts for 73.4 % of forest and 23.2 % of pasture. Input data for the SWAT model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1990 to 1994 was used for calibration and from 1997 to 2005 was for validation. The SUFI-2 module of the SWAT-CUP program was used to calibrate the hydrologic parameters. The parameters were calibrated for the highly sensitive parameters presented in previous studies. The P-factor, R-factor, $R^2$, Nash-Sutcliffe efficiency (NS), and average flow were used for the goodness-of-fit measures. The applicability of the model was evaluated by sequentially increasing the number of applied parameters from 4 to 11. In this study, 10-parameter set was accepted for calibration in consideration of goodness-of-fit measures. For the calibration period, P-factor was 0.85, R-factor was 1.76, $R^2$ was 0.51 and NS was 0.49. The model was validated using the adjusted ranges of selected parameters. For the validation period, P-factor was 0.78, R-factor was 1.60, $R^2$ was 0.60 and NS was 0.57.

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values (반발경도와 초음파속도를 이용한 수중 콘크리트 구조물의 압축강도 예측 기술)

  • Shin, Eun-Seok;Lee, Ji-Sung;Park, Seung-Hee;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.118-125
    • /
    • 2014
  • As the earth's current global warming has caused elevation of sea water temperature, size of storms is foreseen to increase and consequently large damages on port facilities are to be expected. In addition, due to the improved processing efficiency of port cargo volume and increasing necessity for construction of eco-friendly port, demands for various forms of port facilities are anticipated. In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of smart green harbor system. A new methodology to estimate the underwater concrete strengths is proposed and its feasibility is verified throughout a series of experimental works.