• Title/Summary/Keyword: Efficiency Correlation Equation

Search Result 66, Processing Time 0.028 seconds

Technical Inefficiency in Korea's Manufacturing Industries (한국(韓國) 제조업(製造業)의 기술적(技術的) 효율성(效率性) : 산업별(産業別) 기술적(技術的) 효율성(效率性)의 추정(推定))

  • Yoo, Seong-min;Lee, In-chan
    • KDI Journal of Economic Policy
    • /
    • v.12 no.2
    • /
    • pp.51-79
    • /
    • 1990
  • Research on technical efficiency, an important dimension of market performance, had received little attention until recently by most industrial organization empiricists, the reason being that traditional microeconomic theory simply assumed away any form of inefficiency in production. Recently, however, an increasing number of research efforts have been conducted to answer questions such as: To what extent do technical ineffciencies exist in the production activities of firms and plants? What are the factors accounting for the level of inefficiency found and those explaining the interindustry difference in technical inefficiency? Are there any significant international differences in the levels of technical efficiency and, if so, how can we reconcile these results with the observed pattern of international trade, etc? As the first in a series of studies on the technical efficiency of Korea's manufacturing industries, this paper attempts to answer some of these questions. Since the estimation of technical efficiency requires the use of plant-level data for each of the five-digit KSIC industries available from the Census of Manufactures, one may consture the findings of this paper as empirical evidence of technical efficiency in Korea's manufacturing industries at the most disaggregated level. We start by clarifying the relationship among the various concepts of efficiency-allocative effciency, factor-price efficiency, technical efficiency, Leibenstein's X-efficiency, and scale efficiency. It then becomes clear that unless certain ceteris paribus assumptions are satisfied, our estimates of technical inefficiency are in fact related to factor price inefficiency as well. The empirical model employed is, what is called, a stochastic frontier production function which divides the stochastic term into two different components-one with a symmetric distribution for pure white noise and the other for technical inefficiency with an asymmetric distribution. A translog production function is assumed for the functional relationship between inputs and output, and was estimated by the corrected ordinary least squares method. The second and third sample moments of the regression residuals are then used to yield estimates of four different types of measures for technical (in) efficiency. The entire range of manufacturing industries can be divided into two groups, depending on whether or not the distribution of estimated regression residuals allows a successful estimation of technical efficiency. The regression equation employing value added as the dependent variable gives a greater number of "successful" industries than the one using gross output. The correlation among estimates of the different measures of efficiency appears to be high, while the estimates of efficiency based on different regression equations seem almost uncorrelated. Thus, in the subsequent analysis of the determinants of interindustry variations in technical efficiency, the choice of the regression equation in the previous stage will affect the outcome significantly.

  • PDF

A Study on Savings Analysis of Light Dimming Control System Using the Daylight based on Photovoltaic Power Generation (태양광발전 기반의 주광을 활용한 조명제어 시스템의 에너지 절감량 분석 연구)

  • Ham, Won-Tae;Jang, Cheol-Yong;Jeong, Hak-Guen
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • In the normal office building, the energy consumption to maintain the reasonable intensity of illumination for the work by using the artificial illumination occupies 30% or greater of the whole building electric energy consumption. If the dependability of the artificial illumination is dropt by positively using the natural lighting from the outside, the large amount of electrical energy can be saved, in addition the more nice visual environment for work can be created. Daylight is lighting source that most closely match visual response of the human, because sunlight and skylight achieve the harmony. For this reason, the daylight of small amount than amount of the artificial lighting source also can give the same effect in work activities of human. In addition, if there is daylight at the window of the building, the energy can be saved by controlling the artificial lighting. In this paper, in the building using the photovoltaic power generation analyze the correlation between the amount of energy generated by photovoltaic and indoor illumination and this was proved through the simulation with Relux 2010. In addition, the amount of daylight inflow in the room and distribution was drawn by the equation and the ratio for the sectional dimming control of each lighting equipment was predicted and the energy saving amount according to this was calculated. As a result, the indoor illumination was satisfied with recommended illumination value of the office and consumption power could be reduced approximately with 20~70%.

District Energy Use Patterns and Potential Savings in the Built Environment: Case Study of Two Districts in Seoul, South Korea

  • Lee, Im Hack;Ahn, Yong Han;Park, Jinsoo;Kim, Shin Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • Energy efficiency is vital to improve energy security, environmental and social sustainability, and economic performance. Improved energy efficiency also mitigates climate change by lowering greenhouse gas (GHG) emissions. Buildings are the single largest industrial consumer of energy and are therefore key to understanding and analyzing energy consumption patterns and the opportunities for saving energy at the district level in urban environments. This study focused on two representative boroughs in the major metropolitan area of Seoul, South Korea as a case study: Gandong-gu, a typical residential district, and Jung-gu, a typical commercial district. The sources of the energy supplied to the boroughs were determined and consumption patterns in different industry sectors in Seoul used to identify current patterns of energy consumption. The study analyzed the energy consumption patterns for five different building categories and four different sectors in the building using a bottom-up energy modeling approach. Electricity and gas consumption patterns were recorded for different building categories and monthly ambient temperatures in the two boroughs. Finally, a logarithmic equation was developed to describe the correlation between commercial activity and cooling energy intensity in Jung-gu, the commercial district. Based on these results, recommendations are made regarding the current energy consumption patterns at the district level and government energy policies are suggested to reduce energy consumption and, hence, greenhouse gas emissions, in both commercial and residential buildings.

Development of Parallel Plate Avalanche Counter for heavy ion collision in radioactive ion beam

  • Wei, Xianglun;Guan, Fenhai;Yang, Herun;Wang, Yijie;Zhang, Junwei;Ma, Peng;Diao, Xinyue;Lu, Chengui;Li, Meng;Guan, Yuanfan;Duan, Limin;Hu, Rongjiang;Zhang, Xiuling;Xiao, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.575-580
    • /
    • 2020
  • We have developed a position-sensitive Parallel Plate Avalanche Counter (PPAC) to detect the fission fragments and reconstruct the fission reaction plane in the experiment of studying nuclear equation of state (nEOS) by means of heavy ion collision (HIC). This experiment put forward high requirements for the performances of PPAC, such as the time resolution, efficiency and position resolution. According to these requirements we designed the PPAC with an active area of 240 mm × 280 mm working at low gas pressure. The results show that time resolution could be less than 300 ps. Position resolution is consistent with the theoretical calculation about 1.35 mm. Detection efficiency could be approaching 100% gradually with the voltage increasing in different gas pressures. The performances of PPAC have also been verified in beam experiment. Each set of anode wires can be accurately separated in the position spectrum. In the beam experiment, we also got the back-to-back correlation of fission fragments which is one of the direct signals characterizing binary decay.

A methodology for assessing fatigue life of a countersunk riveted lap joint

  • Li, Gang;Renaud, Guillaume;Liao, Min;Okada, Takao;Machida, Shigeru
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2017
  • Fatigue life prediction of a multi-row countersunk riveted lap joint was performed numerically. The stress and strain conditions in a highly stressed substructure of the joint were analysed using a global/local finite element (FE) model coupling approach. After validation of the FE models using experimental strain measurements, the stress/strain condition in the local three-dimensional (3D) FE model was simulated under a fatigue loading condition. This local model involved multiple load cases with nonlinearity in material properties, geometric deformation, and contact boundary conditions. The resulting stresses and strains were used in the Smith-Watson-Topper (SWT) strain life equation to assess the fatigue "initiation life", defined as the life to a 0.5 mm deep crack. Effects of the rivet-hole clearance and rivet head deformation on the predicted fatigue life were identified, and good agreement in the fatigue life was obtained between the experimental and the numerical results. Further crack growth from a 0.5 mm crack to the first linkup of two adjacent cracks was evaluated using the NRC in-house tool, CanGROW. Good correlation in the fatigue life was also obtained between the experimental result and the crack growth analysis. The study shows that the selected methodology is promising for assessing the fatigue life for the lap joint, which is expected to improve research efficiency by reducing test quantity and cost.

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Battery Charge and Discharge Optimization for Vehicle-to-grid Regulation Service (전력 보조서비스 제공을 위한 전기자동차 충/방전 최적화)

  • Kim, Wook-Won;Shin, Hong-Yul;Kim, Jin-O;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1033-1038
    • /
    • 2014
  • Electric vehicles should be connected to power system for charge and discharge of battery. Besides vehicle's battery is charged for a power source, it is also reversibly possible to provide power source from battery to power system. Researches on battery usage for regulation resources have been progressed and could cause cost increase excessively because they distribute regulation capacity equally without considering the battery wear cost of SOC, temperature, voltage and so on. This causes increase of grid maintenance cost and aggravate economical efficiency. In this paper it is studied that the cost could be minimized according to the battery condition and characteristic. The equation is developed in this paper to calculate the possible number of charge and discharge cycle, according to SOC level and weighting factors representing the relation between battery life and temperature as well as voltage. Thereafter, the correlation is inferred between the battery condition and wear cost reflecting the battery price, and the expense of compensation is decided according to the condition on battery wear-out of vehicle. In addition, using realtime error between load and load expectation, it is calculated how much regulation capacity should be provided.

Infrared Thermal Video Stabilization Performance Comparison (열화상 영상 안정화 성능 비교)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.101-104
    • /
    • 2015
  • Motion vector is that comparing a frame between previous frame and current one about how much moved. Using this motion vector, if move the image object of current frame to former frame, it could be corrected to shake from hand and camera shaking. On this thesis, compared efficiency of block matching using SAD(Sum of Absolute Difference) equation as picking out the motion vector, matching using phase correlation, matching using feature point, block matching using bitplane.

  • PDF

Analytical Approach on Intake fort Development of SI Engines Based on Correlations of Design Parameters and Flow Coefficients (가솔린엔진의 흡기유량계수와 포트설계인자의 상관성에 관한 연구)

  • Lee, Si-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.121-129
    • /
    • 2006
  • An Intake Port of SI engines plays a key role on improving engine performance by maximizing full load volumetric efficiency or by optimizing in-cylinder air motion. However, designing an intake port has been usually performed based on port experts' experience and know-how, which means that analytical analyses are relatively insufficient. In this paper, port design parameters which decide an overall port shape were defined in order to correlate them relevantly with flow test results accumulated so far. Test species were composed of all twenty eight SI engines which cover major engine displacements from 1,000cc to 4,000cc. First, they were tested on a steady state flow test rig to find out their flow coefficients. Secondly, those flow coefficients were analyzed based on the port design parameters measured from the engines. The most effective parameters were port height, valve head diameter, and the ratio of port size and cylinder bore diameter. The final correlation equation could predict flow coefficients within 2% deviation.

Physical Properties and Quality Control of Foamed Concrete with Fly Ash for Cast-in-Site (플라이애쉬를 혼입한 현장타설 경량기포콘크리트의 물리적 특성 및 품질관리)

  • 이도헌;전명훈;고진수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • Foamed concrete for cast-in-site, which shows excellent lightweight, thermal insulation, noise insulation, constructability and cost efficiency, has been applied as thermal insulation or filling material for On-dol. However, the technology is too insufficient to obtain the high level of quality, and serious problems often occur in quality control at sites. It, thus, is necessary to establish the proper and reasonable quality control method for ensuring the required quality, based on the investigation on the physical properties and their reciprocal relation. This study aims to settle the quality control method in case of applying FA foamed concrete replacing 40% by weight with fly-ash as the filling material for On-dol. The results of the study include the correlation among flow, as-placed density and foam ratio of fresh foamed concrete, the correlation between physical properties before hardening and after 28-day, provision of an equation to estimate 28-day compressive strength early with 7-day compressive strength, and suggestion of quality criteria for the revision of KS on foamed concrete for cast-in-site.