• Title/Summary/Keyword: Effective volume

Search Result 2,413, Processing Time 0.025 seconds

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

Mathematical Model for Adsorption of Berberine on Encapsulated Adsorbent (캡슬에 고정화된 흡착제에의 Berberine의 흡착에 관한 수학적 모델)

  • 최정우;조상원이원홍
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • A mathematical model using local thermodynamic equilibrium isotherms for adsorption in encapsulated adsorbent is proposed in order to optimize the design parameters in situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in Thaictrum rugosum plant cell culture. The adsorption rate on encapsulated adsorbent is compared with that on alginate-entrapped adsorbent. The result shows that the higher loading capacity in encapsulated adsorbent is mainly due to the increase in the maximum solid phase concentration. Based on the adsorption rate and loading capacity, the encapsulated adsorbent would be more useful than the entrapped adsorbent when used in situ bioproduct separation process. Design parameters in situ bioproduct separation process, such as the size of the capsule, membrane thickness, the ratio of capsule volume to bulk volume, the ratio of single capsule volume to total capsule volume and the adsorbent content in the capsule, are evaluated by using the model. The ratio of single capsule volume to total capsule volume is the most effective parameter for adsorption of berberine on encapsulated adsorbent.

  • PDF

The mechanical analysis of 3-D flat board shaped braided composites (삼차원 평판형태 브레이딩 복합재료의 강성해석)

  • 김성준;강태진;정관수;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.114-117
    • /
    • 2002
  • To develop an effective geometric modeling is essential in order that precise material properties of the 3-D braided composite can be estimated. in this study RVE(representative volume element) which is the smallest volume element representing whole material properties is developed to estimate the mechanical properties of 3-D flat board shaped braided composite using volume averaging method.

  • PDF

A Study on the Application of VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) for Indoor Air Environment (VAV/BPFS(Variable-Air-Volume/Bypass Filtration System) 의 실내환경 적응에 관한 연구)

  • 최성우
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1235-1243
    • /
    • 2003
  • Under controlled conditions in an environmental chamber, 24 experiments were performed to compare the ability of a Variable-Air-Volume/Bypass Filtration System(VAV/BPFS) to remove indoor pollutants and to conserve energy with the ability of conventional Variable Air Volume(VAV) system. The specific conclusions of this paper were; first, the VAV/BPFS was more efficient than the VAV system in removing particulate matter, TVOC, and target VOCs. The total effective removal rate of PM for the VAV/BPFS was two times as high as that of the VAV system. The total effective removal rate of TVOC for the VAV/BPFS was 20 percent higher than that of the VAV system. Also each target VOC concentration was reduced by using the VAV/BPFS. Second, clean air delivery rate was increased by using VAV/BPFS due to additional filtration rate. Otherwise, the VAV/BPFS decreased outdoor supply air rate above 25 percent relative to the rate of VAV system. Third, total energy consumption by the VAV/BPFS was lower than that of the VAV system during the period with indoor thermal load, occupied time. The energy saving of the VAV/BPFS ranged from 11 to 16 percent. The VAV/BPFS improves indoor air quality more efficiently than the VAV system, and it reduced energy consumption. Retrofitting the VAV system with the VAV/BPFS was easy The use of VAV/BPFS is, therefore, recommended far buildings with VAV system as well as for buildings at designing stage.

Effects of Raw Materials for Papermaking and Physical Treatment on the Pore Structure and Paper Properties (제지 원료의 특성 및 물리적 처리가 종이의 기공 구조 및 물성에 미치는 영향)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Effects of pulp type, refining and filler type on the pore characteristics and physical properties of paper were investigated. HwBKP, SwBKP and BCTMP are used to study the effect of pulp type in this study. The effects of each filler (PCC, GCC and talc) and the combination of PCC/GCC were also studied. Highest bulk, pore volume and light scattering are obtained from BCTMP and PCC. It was found that the pore size and pore volume are important in light scattering in paper structure. It was found that PCC was the most effective filler for the improvement of the bulk and light scattering because of the increase in pore volume which can scatter light, but the increase of PCC content was not so effective in the improvement of bulk.

Comparison of ventilation effects by mask-sealing methods during bag-valve-mask ventilation (백-밸브-마스크 환기 시 마스크 밀착방법에 따른 환기효과 비교)

  • Lee, Nam-Jong;Baek, Mi-Lye
    • The Korean Journal of Emergency Medical Services
    • /
    • v.22 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • Purpose: The purpose of this study was to compare the tidal volumes and airway pressures of 3 mask-sealing methods (one hand C-E, two hands C-E, and one hand O-E) for ventilation treatment. Methods: The study subjects were 45 paramedic students. Tidal volume was measured for the three sealing methods by setting a ventilator, connecting it to the masks for 2 minutes, and using Respi-trainer software. Results: Regarding general characteristics, the group of men, in upper grades, and with practical training experience and experience and experience in the implementation of bag-valve-mask ventilation provided higher tidal volumes. Regarding physical characteristics, larger hands and greater grip strength correlated with higher tidal volume. Two hands C-E generated the highest tidal volume of $483.78{\pm}34.14mL$, one hand O-E generated $449.59{\pm}51.09mL$ and one hand C-E generated $394.31{\pm}68.95mL$. Conclusion: Means of tidal volumes were statistically significantly different based on mask sealing methods (p<.001). Two hand C-E was performed by the two-persons task and was suggested as the most effective method. For the one-person task, one hand O-E was the more effective method compared to the previous one hand C-E.

The Study of Effectiveness of Volume Mode in Pediatric CT (소아 전산화단층촬영에서 Volume Mode의 유용성 연구)

  • Park, Yun;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.425-431
    • /
    • 2014
  • The purpose of this study is to analyze dose comparison and image quality evaluation according to Volume and Helical mode using ATOM Phantom. It is to actively use the Volume mode in pediatric CT examinations. There was no significant difference with Helical and Volume in the value of Noise, HU, SNR(p>0.05). All dose values was no statistical difference(p>0.05). In the value of DLP and effective dose by part, Volume mode was measured lower than Helical mode. For qualitative analysis, by scan parameter helical mode showed respectively 2.6, 3.3, 4.36 and Volume mode indicated 2.8, 3.64, 4.44 point. Image evaluation for the follow-up, Helical mode and Volume mode were respectively 3.8 and 3.83. In fact, There was no significant difference. In CT scans in children under 5 years, because 640-MDCT Volume scan dose compared with Helical mode is lower and there is no significant difference with two modes in the image quality, 640-MDCT Volume scan is thought to be useful for pediatric CT scans.

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

An Approximate Time-Effective Finite Element Method for Analyzing a Rotary Forging Process (회전단조공정 해석을 위한 실용적 유한요소법)

  • Moon H. K.;Lee M. C.;Chung J. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.117-121
    • /
    • 2005
  • In this paper, an approximate time-effective approach to rigid-plastic finite element method is presented with its solution scheme and a volume compensation method is proposed to simulate rotary forging processes. The applicability is examined by comparing the results obtained by the presented approach with those by the conventional approach. The approach is applied to simulation of a rotary forging process fur a wheel bearing assembly. The analyzed results are compared with the experimental results.

  • PDF

Studies on the Nuclease (Part 1) Phosphodiesterase and Phosphomonoesterase Producing by Streptomyces sp. (핵산분해효소에 관한 연구 (제1보) Streptomyces속 균주가 생산하는 Phosphomono, diesterase)

  • 이정치;장효일;김혁일;양한길
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.3
    • /
    • pp.121-127
    • /
    • 1978
  • This paper deals with investigation on the various effects of phosphodiesterase production of Streptomyces sp. and several properties of the enzyme. The results were as follows. 1) As a carbon source, sucrose was most effective PDase production when it was added. to the basal medium at 3% concentration. 2) These enzymes were remarkably activated by $Ca^{2+}$, Co$^{2+}$ and Mn$^{2+}$ but inhibited by Cu$^{2+}$. It was observed that concentration of metal ions, 0.1% of $Ca^{2+}$, 0.01% of Co$^{2+}$ and 0.04% of Mn$^{2+}$ were effective on the production of phosphodiesterase and phosphomonoesterase. 3) In case of the effect of aeration volume, 25 ml was very effective, that is, the more sufficient aeration, the better enzyme activity. Enzyme activity was to be found effective at 3% of inoculation volume, and comparatively more effective at 2%, 4% of inoculation volume. 4) Initial pH was 8. The enzyme activity reached to the maximum at 48 hours of cultivation time. 5) The optimum pH of phosphodiesterase was about 8 and that of phosphomonoesterase was about 9. The optimum temperature of phosphodiesterase and phosphomonoesterase was 6$0^{\circ}C$ and 5$0^{\circ}C$ respectively. respectively.

  • PDF