• Title/Summary/Keyword: Effective thermal capacity

Search Result 90, Processing Time 0.023 seconds

A Study on Convective Heat Transfer of Microcapsulated Lauric Acid Slurry in Laminar Flows Through a Circular Pipe (미립피복 로릭산 슬러리의 층류 관내 대류 열전달에 관한 연구)

  • Choi Eunsoo;Jung Dongju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1006-1012
    • /
    • 2004
  • The objective of the present study is to reveal thermal characteristic of micro-capsulated lauric acid slurry, which has high latent heat during phase change from solid to liquid, in circular pipe. Tests were performed with the microcapsulated lauric acid slurry in the heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the sizes of microcapsulated lauric acids were increased, local Nusselt numbers of microcapsulated lauric acid slurries were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 1.43 times larger than that of water.

A study on convective heat transfer with microcapsulated lauric acid slurry in circular pipe (미립피복 로릭산 슬러리의 관내 대류 열전달에 관한 연구)

  • Jeong, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1554-1559
    • /
    • 2003
  • The objective of the present study is to reveal thermal characteristic of microcapsulated lauric acid slurry, which have high latent heat during phase change from solid to liquid, in circular pipe. Test were performed with microcapsulated lauric acid slurry in a heating test section with a constant heat flux boundary condition. Local Nusselt number and the effective thermal capacity were measured. As the size of microcapsulated lauric acid were increased, Local Nusselt number of microcapsulated lauric acid slurry were increased. The effective thermal capacity of microcapsulated lauric acid slurry was 0.5 times than it of water

  • PDF

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Convective Heat Transfer of Using an Ice Slurry in n circular pipe (아이스 슬러리의 원형관내 대류열전달에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Enhancement of Convective Heat Transfer by Using a Micro-Encapsulated Phase-Change-Material Slurry (피복된 미립 상변화물질 슬러리를 이용한 대류 열전달의 향상에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1277-1284
    • /
    • 2000
  • To enhance heat transfer characteristics of water, micro-encapsulated octadecane of about $10{\mu}m$ diameter was added to water. Viscosity of the slurry was measured by using a capillary tube viscometer. The measured viscosity decreased as the temperature of the slurry increased, and it increased as the fraction of the capsules in the slurry increased. Thermal characteristics of the octadecane were studied by using a differential scanning calorimeter. The melting temperature and the melting energy of the octadecane were found to be $28.6^{\circ}$ and 34.4kcal/kg, respectively. The convective heat transfer characteristics of the slurry were investigated in a flow loop with a constant heat flux test section. Friction factor of the slurry flow was found to be similar to the expected curve by Petukhov. The Nusselt number of the slurry flow was highest when the octadecane melted. Effective thermal capacity of the 14.2% slurry was found to have 1.67 times of the thermal capacity of water.

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles (전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법)

  • Kim, Dae-Wan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2545-2552
    • /
    • 2014
  • This study is aiming to suggest the effective thermal management system design technologies for the high voltage and capacity battery system of the electricity driven vehicles and introduce the theoretical designing methods. In order to investigate the effective operation of the battery system for the electricity driven vehicles, the heat generation model for Li-ion battery system using the chemical reaction while charging and discharging was suggested and the thermal loads of the heat sources (air or liquid) for cooling and heating were calculated using energy balance. Especially, the design methods for the cooling and heating of the battery system for maintaining the optimum operation temperature were investigated under heating, cooling and generated heat (during charging and discharging) conditions. The battery thermal management system for the effective battery operation of the electricity driven vehicles was suggested reasonably depending on the variation of the season and operation conditions. In addition, at the same conditions under summer season, the cooling method using the liquid and active cooling technique showed a relatively high capacity, while cooling method using the passive cooling technique showed a relatively low capacity.

Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model (단순모델에 의한 회전형 열교환기 이론해석)

  • Son, Sung Gyun;Kim, Yongchan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.