• 제목/요약/키워드: Effective stress intensity factor

검색결과 137건 처리시간 0.03초

잔류응력장을 전파하는 용접 토우부 균열의 전파해석 (Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

축계용 단조강재 보수 용접부의 피로 파괴 특성에 관한 연구 (A Study on the Effect of the Buliding Up by Welding on the Fatigue Fracture Behaviors for the Forged Steel)

  • 김영식;김종호;한명수;손병영
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.97-105
    • /
    • 1991
  • In this paper, the fatigue strength and the fatigue crack propagation behaviors of the round bar specimens which were spirally built up by welding and subsequently hardened by quenching were investigated. The material used was SF60 which was whdely employed in mechanical components, especially shafts. Fatigue tests were conducted at the fully reversed condition(R=-1) and axial and load control in the room temperature ahd air environment. The experimental results were expressed by both the range of stress intensity factor ($\Delta{K}$) and the effective range of stress intensity factor ($\Delta{K}_{eff}$). It was clarified that applying of quenching after the building up welding process improved the fatigue strength and the gatigue crack propagation property in the low range of $\Delta{K}$ of the built up round bar specimen.

  • PDF

철도 차륜의 구름접촉 피로 균열에 관한 유한요소해석 (FEM Analysis on Rolling Contact Fatigue Crack of a Railway Wheel)

  • 김호경;양경탁;김현준
    • 한국안전학회지
    • /
    • 제22권2호
    • /
    • pp.8-14
    • /
    • 2007
  • In this study, tensile and fatigue crack propagation tests machined from actual wheels were performed. FEM analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors K I and K II at the crack tip under the stress($P_{max}=911.5MPa$) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one. It is found that in the wheel fatigue crack, parallel to the wheel tread surface, the crack with its length 2a = 2.4mm starts to propagate due to the fact that the effective stress intensity factor access to the threshold stress intensity factor($K_{th}=16.04MPa{\sqrt{m}}$) of the wheel.

경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정 (Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow)

  • 이강용;백운천
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.

7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響 (The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy)

  • 박영조;김정규;신용승;김성민
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.62-69
    • /
    • 1986
  • 본 연구에서는 표면균열의 전파거동에 관한 연구의 일환으로 경량화재료 로서 항공기 구조용으로 널리 사용되고 있는 7075-T651 알루미늄합금을 준비하고 제하탄성 compliance법을 이용하여 표면 및 깊이 방향의 균열진전거동의 특성을 밝히고져 한다.

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I) (A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I))

  • 최병기
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

굽힘하중의 받는 외팔보의 변동하중에 대한 균열진전 거동 (Crack Propagation Behavior for Variable Load in Cantilever Beam under Bending Load)

  • 김엽래
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.178-183
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 and 5052-H32 aluminum alloys for variable load within tensile load range condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratio is R=0.3 and variable load are R=0.65, 0.46. Crack length, stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc. are inspected with fracture mechanics estimate.

  • PDF

축대칭 압출금형의 피로수명예측에 관한 연구 (A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF