• Title/Summary/Keyword: Effective stiffness

Search Result 1,070, Processing Time 0.031 seconds

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures (다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구)

  • Kwak, Hyo-Gyoung;Hong, Seong Jin;Kim, Young Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.497-512
    • /
    • 2006
  • In this paper, a simple but effective analysis procedure to estimate seismic capacities of multi-span continuous bridge structures is proposed on the basis of modal pushover analysis considering all the dynamic modes of structure. Unlike previous studies, the proposed method eliminates the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio and an approximate elastic deformed shape. Moreover, in addition to these two introductions, the use of an appropriate distributed load {P} makes it possible to predict the dynamic responses for all kinds of bridge structures through a simpler analysis procedure. Finally, in order to establish the validity and applicability of the proposed method, correlation studies between rigorous nonlinear time history analysis and the proposed method are conducted for multi-span continuous bridges.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Effect of Transient Isokinetic Exercise on Cardiac Autonomic Nervous Modulation and Muscle Properties (일회성 등속성 운동이 심장 자율신경 조절 및 근속성에 미치는 영향)

  • Soo-Kyoung Park;Si-Eun Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Purpose : The aim of this study was to identify the influence of transient isokinetic exercise on cardiac autonomic modulation and muscle properties in healthy male subjects. Methods : Twenty-eight healthy males underwent isokinetic exercise of both knee joints using a Biodex systems 3 isokinetic dynamometer with an angular velocity of 60 °/sec. The changes in activity of the autonomic nervous system, as determined by heart rate variability (HRV), and in muscle properties were evaluated at three times: pre-exercise, immediately post-exercise, and 10 min post-exercise. Results : The time domain analysis of HRV revealed significant changes in the beat count and mean and minimal heart rate (HR) measured at pre-exercise, immediately post-exercise, and 10 min post-exercise (p<.001). The beat count and mean HR were markedly increased immediately post-exercise compared to pre-exercise, but then significantly decreased at 10 min post-exercise (p<.001). All parameters of the frequency domain were significantly altered by isokinetic exercise (p<.01). The low frequency/high frequency (LF/HF) ratio, as an index for the sympathovagal balance, was elevated by exercise and remained at a similarly high level at 10 min post-exercise (p<.01). The muscle properties of rectus femoris were changed as follows: Muscle tone and stiffness were significantly increased between pre-exercise and immediately post-exercise (p<.001), and between pre-exercise and at 10 min post-exercise (p<.001). Whereas, the elasticity showed no significant change. Conclusion : These results demonstrated that transient isokinetic exercise could induce changes in cardiac autonomic control and muscle properties. In particular, up-regulation of LF/HF ratio after exercise signifies thus enhanced sympathetic modulation by isokinetic exercise. Therefore, it is needed to understand the cardiovascular risks that may arise during isokinetic exercise for providing the basic evidence to establish appropriate isokinetic exercise protocols as effective rehabilitation exercises.

The Effects of Proprioceptive Neuromuscular Facilitation Stretching and Ballistic Stretching on Hip Joint Flexibility and Muscle Tone (고유수용성 신경근 촉진 스트레칭 기법과 탄성 스트레칭 기법이 엉덩관절 유연성 및 근 긴장도에 미치는 영향)

  • Tae-Woo Kang;Seo-Yoon Park
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • Purpose: The purpose of this study is to compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching, based on ballistic stretching and the contract-relax technique, on hip joint flexibility and muscle tone in adults with shortened rectus femoris muscles. Methods: The study involved 40 adults with shortened rectus femoris muscles, identified using the modified Thomas test. Participants were randomly divided into two groups: PNF stretching, employing the contract-relax technique, and ballistic stretching. Measurements included muscle tension, hip joint range of motion, and muscle characteristics. The rectus femoris muscle shortening effect was confirmed by the modified Thomas test, while the flexibility effect was assessed through hip joint motion range. The muscle tension effect was determined using Myoton-PRO. Results: Both stretching methods resulted in significant improvements in modified Thomas test angles and frequency, with the PNF stretching group showing notably greater changes. However, neither stretching method significantly affected decrement or stiffness measurements. These findings suggest that PNF stretching may be more effective for certain outcomes compared to ballistic stretching. Conclusion: In summary, both stretching methods positively influenced flexibility and muscle tension, with PNF stretching showing a greater impact. These findings highlight the importance of selecting the appropriate stretching technique for achieving functional improvements in muscles, which could serve as valuable indicators for preventing and treating muscle injuries in both sports and daily activities.

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry (탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링)

  • In Seok Joung;AHyun Cho;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.144-153
    • /
    • 2024
  • Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar;Abdelhakim Kaci;Aicha Bessaim;Mohammed Sid Ahmed Houari;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.225-238
    • /
    • 2024
  • In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes (지진 시 지반개량에 따른 잔교식 안벽의 동적 거동)

  • Hyeonsu Yun;Seong-Kyu Yun;Gichun Kang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 2024
  • The 2017 Pohang earthquake caused damage to quay structures due to liquefaction. Liquefaction occurs when effective stress is lost due to an increase in excess pore water pressure during an earthquake. As a result, the damage caused to the pier-type quay wall was identified and the damage caused by liquefaction was analyzed. In addition, in the case of improved ground, damage occurred due to liquefaction of the lower sand layer due to the difference in stiffness from the soft rock layer, so additional numerical analysis was performed assuming non-liquefaction ground. There are several factors that affect the increase in excess pore water pressure ratio, such as the relative density of the ground and the magnitude of the input seismic acceleration. Therefore, this study performed numerical analysis for Cases 1 to 3 by increasing the magnitude of the input acceleration, and in the case of improved ground, damage occurred due to liquefaction of the lower sand layer, so the analysis was performed assuming non-liquefaction ground. As a result, the improved ground requires additional reinforcement when there is liquefied ground below, and the horizontal displacement of the pier-type quay piles was reduced by about two times.