• Title/Summary/Keyword: Effective resistance

Search Result 2,466, Processing Time 0.032 seconds

Weld Quality Assurance Method using Statistical Analysis of Primary Dynamic Resistance During Resistance Spot Welding (1차 동저항 패턴의 통계적 분석에 의한 저항 점 용접의 용접 품질 예측에 관한 연구)

  • Jo, Yong-Jun;Lee, Se-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2581-2588
    • /
    • 2000
  • In previous studies, the dynamic resistance, which was calculated by the process variables measured at the electrode of the welding machine, and the electrode displacement were used for quality exa mination. However, in-process usage of such systems is not effective in systems that include a welding gun attached to a robot. In order to overcome such problems, we obtained and used the process variables from the welding machine timer. This would allow us to estimate real time in -process weld quality. For quality estimation, the features were extracted as factors from the primary dynamic resistance patterns, which were measured in t he welding machine timer. The relationship between the indexes and nugget size of the welds was observed through the regression analysis. Using the analyzed factors, a regression model that could estimate nugget diameter was developed. Two regression equations of the model were suggested depending on the factors, and it was showed that the model developed by stepwise method was effective one for weld quality estimation. The developed estimation model was in good linearity with the nugget diameter obtained through the experimentation.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Evaluation of Ground Effective Thermal Properties and Effect of Borehole Thermal Resistance on Performance of Ground Heat Exchanger (지중 유효 열물성 산정 및 지중열교환기 성능에 대한 보어홀 열저항의 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Geothermal heat pump(GHP) systems use vertical borehole heat exchangers to transfer heat to and from the surrounding ground via a heat carrier fluid that circulates between the borehole and the heat pump. An Important feature associated with design parameters and system performance is the local thermal resistances between the heat carrier flow channels in the borehole and the surrounding ground. This paper deals with the in-situ experimental determination of the effective thermal properties of the ground. The recorded thermal responses together with the line-source theory are used to determine the thermal conductivity and thermal diffusivity, and the steady-state borehole thermal resistance. In addition, this paper compares the experimental borehole resistance with the results from the different empirical and theoretical relations to evaluate this resistance. Further, the performance simulation of a GHP system with vertical borehole heat exchangers was conducted to analyze the effect of the borehole thermal resistance on the system performance.

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

The Effects of Resistance Exercise and Balance Exercise on Proprioception and WOMAC Index of Patients with Degenerative Knee Osteoarthritis

  • Yun, Young-Dae;Shin, Hee-Joon;Kim, Sung-Joong;Lim, Sang-Wan;Choi, Suk-Ju;Seo, Dong-Kyu;Kim, Hong-Rae;Kim, Jung-Hee;Lee, Joo-Sang;Kim, Mi-Jung;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.169-175
    • /
    • 2010
  • The purpose of this study was to analyze and compare the effect of resistance exercise and balance exercise on proprioception and WOMAC index of patients with degenerative knee osteoarthritis. A total of 40 subjects participated in this study. The subjects were diagnosed with degenerative knee osteoarthritis and all were more than 60 years old. They were divided into three groups. Group I(n=8) was trained with resistance exercise, Group II(n=6) was trained with balance exercise and Group III(n=6) was trained with range of motion as a control. The results of this study were as follows. It was significantly indicated that the resistance exercise group and balance exercise group elicited error-reduction on proprioception goal-angle (p<.05). There was a statistically significant difference on proprioception between resistance exercise group and control(range of motion) group. There was a statistically significant reduction on WOMAC index between resistance exercise group and balance exercise group (p<.05) and on the WOMAC index between resistance exercise group and range of motion group(p<.05). In conclusion, resistance exercise and balance exercise are effective on degenerative knee osteoarthritis and resistance exercise is the most effective for improving proprioception and WOMAC index. More research on the intervention according to the degree of degenerative knee osteoarthritis is needed.

  • PDF

Estimation of load and resistance factors based on the fourth moment method

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Ang, Alfredo H.S.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.19-36
    • /
    • 2010
  • The load and resistance factors are generally obtained using the First Order Reliability Method (FORM), in which the design point should be determined and derivative-based iterations have to be used. In this paper, a simple method for estimating the load and resistance factors using the first four moments of the basic random variables is proposed and a simple formula for the target mean resistance is also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance factors can be determined using the proposed method even when the probability density functions (PDFs) of the basic random variables are not available. Moreover, the proposed method does not need either the iterative computation of derivatives or any design points. Thus, the present method provides a more convenient and effective way to estimate the load and resistance factors in practical engineering. Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method for determining the load and resistance factors.

Numerical Study on the Extrapolation Method for Predicting the Full-scale Resistance of a Ship with an Air Lubrication System

  • Kim, Dong-Young;Ha, Ji-Yeon;Paik, Kwang-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2020
  • Frictional resistance comprises more than 60% of the total resistance for most merchant ships. Active and passive devices have been used to reduce frictional resistance, but the most effective and practical device is an air lubrication system. Such systems have been applied in several ships, and their effects have been verified in sea trials. On the other hand, there are some differences between the results predicted in model tests and those measured in sea trials. In this study, numerical analyses were carried out for a model and a full-scale ship. A new extrapolation method was proposed to improve the estimation of the full-scale resistance of a ship with an air lubrication system. The volume of fluid (VOF) method was considered for the numerical models of the air layer. The numerical method was validated by comparing the experimental data on the air layer pattern and the total resistance.

The Effect of Mineral Admixtures' Type on the Chloride Penetration Resistance of Concrete (콘크리트의 염화물 침투저항성에 미치는 무기질 혼화재 종류의 영향)

  • Kim, Young-Jin;Kim, Dong-Seok;Yu, Jae-Kang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.802-805
    • /
    • 2004
  • This study was performed to investigate the effect of mineral admixture' type and replacement ratios on the chloride penetration resistance of concrete which was immersed in the artificial chloride solution. The chloride penetration resistance was evaluated by penetration depth and chloride diffusion coefficient. As a result, all of the mineral admixtures were effective on the chloride penetration resistance of concrete compared to ordinary portland cement only.

  • PDF

Analysis of Water Hammering in a Pipe Having an Accumulator

  • Suh, Yong-Kweon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • This paper addresses characteristics of compressible flow dynamics inside a pipe with an accumulator and an inlet orifice. It also presents a simple but stable numerical method associated with the accumulator-orifice calculation. In particular, a focus is given to developing a method of finding an optimum design of the accumulator-orifice system (i.e., the accumulator size and the throttle resistance) that gives the most effective dissipation of the water-hammering problem. It is found that there exists indeed an optimum set of parameter values for the most effective dissipation of the wave energy.

Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi

  • Sang, Hyunkyu;Lee, Hyang Burm
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The succinate dehydrogenase inhibitor (SDHI) is a class of fungicides, which is widely and rapidly used to manage fungal pathogens in the agriculture field. Currently, fungicide resistance to SDHIs has been developed in many different plant pathogenic fungi, causing diseases on crops, fruits, vegetables, and turf. Understanding the molecular mechanisms of fungicide resistance is important for effective prevention and resistance management strategies. Two different mechanisms have currently been known in SDHI resistance. The SDHI target genes, SdhB, SdhC, and SdhD, mutation(s) confer resistance to SDHIs. In addition, overexpression of ABC transporters is involved in reduced sensitivity to SDHI fungicides. In this review, the current status of SDHI resistance mechanisms in phytopathogenic fungi is discussed.