• Title/Summary/Keyword: Effective porosity

Search Result 339, Processing Time 0.025 seconds

Temperature Effect on the Physical Properties of Boryung Sandstone and Yeosan Marble (보령사암과 여산대리암의 물리적 특성에 대한 온도의 영향)

  • Yoon Yong-Kyun
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.17-22
    • /
    • 2004
  • Boryung sandstone and Yeosan marble were thermally cracked at predetermined temperatures ranging $200^{\circ}C$ to $600^{\circ}C$. Optical microscopy was utilized to observe thermally induced cracks and physical properties such as specific gravity, effective porosity k elastic wave velocity were measured. Optical observations show that all crystal boundaries of Yeosan marble heated to $600^{\circ}C$ open and new intracrystalline cracks seem to be occurred in all crystals, but developments of thermal cracks in Boryung sandstone heated to $600^{\circ}C$ are not pronounced. From $200^{\circ}C$ upwards, effective porosity and elastic wave velocity of Yeosan marble are sharpely increased, whereas effective porosity and elastic wave velocity of Boryung sandstone are weakly increased.

Thermal Conductivity of Dry and Saturated Cores from Ulleung Island in a Constant Temperature and Humidity Condition (항온항습 환경에서 울릉도 시추코어의 건조·수포화 열전도도)

  • Lee, Keun-Soo;Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.220-230
    • /
    • 2018
  • When thermal conductivity of rock is measured with PEDB (Portable Electronic Divided Bar) in a laboratory, it can be greatly influenced by the change of room temperature. Therefore, measuring the thermal conductivity in a thermo-hygrostat is necessary, where it can remain in its constant temperature and humidity condition. In this study, a system for thermal conductivity measurement in a thermo-hygrostat has been set up and the thermal conductivities for the 45 samples collected from GH3 and GH4 boreholes in Ulleung Island have been measured both in dry and saturated conditions. Also, the correlations between those thermal conductivities, density, and effective porosity have been discussed. As a result of correlation analysis among the thermal conductivity, density, and effective porosity, it showed higher correlation with dry samples than saturated samples. Especially, thermal conductivity ratio between saturated and dry conditions shows very high correlation ($R^2=0.90$) with effective porosity.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models

  • Ghandourh, Emad E.;Abdraboh, Azza M.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.

Properties of Pohang Mudstone with High Porosity According to Water Immersion (수침에 따른 공극률이 큰 포항 이암의 특성)

  • Kim, Byung-Soo;Lee, Yun-Jae;Kim, Tae-Hyung;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.83-92
    • /
    • 2021
  • In this study, effective porosity measurement, electron microscope (SEM) observation, X-ray diffraction analysis (XRD), slaking, swelling, and unconfined compression strength according to water immersion were analyzed to evaluate the properties of mudstone with high porosity in Pohang. As a result of the test for 16 square samples (5 cm), the effective porosity was 14.67% on average, higher than porosity of general mudstone, and electron microscope observation confirmed that the porosity was actually high. As a result of X-ray diffraction analysis, the swelling clay mineral content was 2.3~4.1%, which was lower than the results of previous studies in Pohang. The slake durability index was 37.73~87.73%, showing low to medium durability, which was lower than the results of previous studies. It was confirmed that the swelling property rapidly expanded to 1.79~1.82% of maximum swelling strain in the major axis direction for 30 minutes. As the properties of decreasing the unconfined compression strength according to water immersion, the samples rapidly weathered after 10 minutes of water immersion, and the strength decreased. It was confirmed that the results of previous studies related to mudstone in Pohang were different. This is judged to be due to the high porosity of mudstone in study.

An experimental study on the heat transfer characteristics in packed bed (충전층내에서의 열전달특성에 관한 실험적 연구)

  • 신현준;양한주;오수철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.40-47
    • /
    • 1982
  • Heat transfer on packed bed is considered to be important for the effective designs of chemical reaction equipment, air conditioning system, and storage type heat exchanger, etc. Currently studies are being carried out quite actively in this field in order to increase the heat transfer efficiency. The effect of heat transfer is closely relater to materials, shapes, porosities and packing states of packed bed as well as mutual dimensional relations between particles and the container. Investigation shows that heat transfer results appear to be influenced by such parameters as fluid velocity through packed bed, mass flow, and thermal properties. It is noted that viscosity is also considered to be an important factor in this problem. In this study, effective thermal conductivities on packed bed, effects of thermal conductivity (Ke) and friction factor (Fk) according to change of porosity(.epsilon.) and Reynolds number(Reh(, and pressure loss of the fluid, are experimentally investigated. Results show that the effective thermal conductivity increases and the friction factor decreased, as against the increase of Reynolds number. But as the increase of porosity increase them both.

  • PDF

Study on the Thermal Conductivity of Frozen Soil Considering Various Experimental Conditions (다양한 실험조건을 고려한 동결 사질토의 열전도도 산정에 대한 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.5-11
    • /
    • 2023
  • In analyzing geotechnical structures, the analysis fields are becoming increasingly diversified. In particular, the need for predicting the thermal behavior of ground materials has become important in fields related to soil freezing. To ensure a reliable assessment of the freezing behavior of the ground, considering the variation in the effective thermal conductivity of soil specimens under various conditions is crucial. In this study, probe experiments were conducted by varying the porosity, initial degree of saturation, and read time settings of the meter. Next, the factors influencing the effective thermal conductivity of the frozen sandy soil were evaluated. The experimental results conducted under different porosity conditions showed a tendency for the effective thermal conductivity of frozen soil to increase as the specimen's porosity decreased. However, as the degree of saturation of the specimen increased, the effective thermal conductivity also increased. The sensitivity of the meter's read time setting to the measurement of effective thermal conductivity was observed. When the read time was set to 1 min, the measured values were in a range similar to that obtained in previous studies conducted in Korea with the same soil specimen.

Internal pressures in buildings with a dominant opening and background porosity

  • Kim, P.Y.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.47-60
    • /
    • 2013
  • A dominant opening in a windward wall, which generates large internal pressures in a building, is a critical structural design criterion. The internal pressure fluctuations are a function of the dominant opening area size, internal volume size and external pressure at the opening. In addition, many buildings have background leakage, which can attenuate internal pressure fluctuations. This study examines internal pressure in buildings for a range of dominant opening areas, internal volume sizes and background porosities. The effects of background porosity are incorporated into the governing equation. The ratio of the background leakage area $A_L$ to dominant opening area $A_W$ is presented in a non-dimensional format through a parameter, ${\phi}_6-A_L/A_W$. Background porosity was found to attenuate the internal pressure fluctuations when ${\phi}_6$ is larger than 0.2. The dominant opening discharge coefficient, ${\kappa}$ was estimated to lie between 0.05 to 0.40 and the effective background porosity discharge coefficient ${\kappa}^{\prime}_L$, was estimated to be between 0.05 to 0.50.

Fermentation Characteristics of Kochujang in Onggis with Different Porosities (통기성이 다른 옹기에서의 고추장 발효 특성)

  • Chung, Sun-Kyung;Lee, Kwang-Soo;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • The effect of different porosity of onggis, Korean earthenware, on the fermentation of kochujang was investigated. The porosity was controlled with glazing treatment. Three kinds of onggis were made: one with no glazing treatment, one with outside glazing treatment, and one with both inside and outside glazing treatment. During 4 month fermentation of kochujang in porosity-controlled earthenwares, physical, chemical, microbiological, and sensory quality attributes were monitored. Higher protease activity and higher contents of amino nitrogen, free amino acids, and total neucleotide were observed in kochujang fermented in the onggi with outside glazing treatment, which might have resulted in better sensory quality. Onggi with medium porosity could be effective for fermentation of kochujang.

  • PDF

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.