• Title/Summary/Keyword: Effective pixels

Search Result 173, Processing Time 0.02 seconds

A Balancing Method to improve efficiency of Stereo Coding (스테레오 코딩의 효율화를 위한 밸런싱 방법)

  • Kim, Jong-Su;Choi, Jong-Ho;Lee, Kang-Ho;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2007
  • Imbalances in focus, luminance and color between stereo Pairs could cause disparity vector estimation error and increment of transmission data. If the distribution of errors in residual image is large, it may influence to lowering of compression performance. Therefore, in this paper, we propose an efficient balancing method between stereo pairs to reduce the effect. For this, we registrated stereo images using a FFT based method to consider the pixels in the occluded region, we eliminated the pixels of blocks which has large error of disparity vector estimation in balancing function estimation. The balancing function has estimated using histogram specification, local information of target image and residual image between stereo images. Experiments show that the proposed method is effective in error distribution, PSNR and disparity vector estimation. We expect that our method can be improving compression efficiency in stereo coding system.

  • PDF

Piecewise Image Denoising with Multi-scale Block Region Detector based on Quadtree Structure (쿼드트리 기반의 다중 스케일 블록 영역 검출기를 통한 구간적 영상 잡음 제거 기법)

  • Lee, Jeehyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • This paper presents a piecewise image denoising with multi-scale block region detector based on quadtree structure for effective image restoration. Proposed piecewise image denoising method suggests multi-scale block region detector (MBRD) by dividing whole pixels of a noisy image into three parts, with regional characteristics: strong variation region, weak variation region, and flat region. These regions are classified according to total pixels variation between multi-scale blocks and are applied principal component analysis with local pixel grouping, bilateral filtering, and structure-preserving image decomposition operator called relative total variation. The performance of proposed method is evaluated by Experimental results. we can observe that region detection results generated by the detector seems to be well classified along the characteristics of regions. In addition, the piecewise image denoising provides the positive gain with regard to PSNR performance. In the visual evaluation, details and edges are preserved efficiently over the each region; therefore, the proposed method effectively reduces the noise and it proves that it improves the performance of denoising by the restoration process according to the region characteristics.

Recognition of Fruit in Apple Tree using Color and Morphological Filters (색 변환 및 형태학적 필터를 이용한 사과인식에 관한 연구)

  • Hong, Jae-Seong;Park, Jeong-Gwan;Choi, In-Myung;Lee, Soo-Hee;Kim, Jung-Bae;Yun, Cheon-Jong
    • Horticultural Science & Technology
    • /
    • v.17 no.2
    • /
    • pp.127-130
    • /
    • 1999
  • This study was attempted to develop the algorithm for recognizing fruits acquired from apple tree images with digital camera in sunlight. As the result of L*a*b* color transformation for reducing the effect of sunlight, a* and b* color index were effective to extract apple pixels in tree images and linear discrimination functions with color index a* b* were developed. To recognize fruits from apple pixels, those were classified into 4 patterns according to clustering condition and morphologically filtered. Test results showed that apple fruits unoccluded were exactly recognized, whereas apple fruits occluded with leaves and trunk were miscounted 2 apples on average.

  • PDF

Directional Deinterlacing Method Using Local Gradient Features (국부 Gradient 특징을 이용한 방향성 deinterlacing 방법)

  • Woo, Dong-Hun;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.41-46
    • /
    • 2005
  • Deinterlacing is the conversion from interlaced to progressive scan image that is considered to be 2 times image interpolation. In this paper, the simple and effective deinterlacing method is proposed based on the local gradient information of neighborhood pixels. In the proposed method, the weights for directions around the pixel to be interpolated are estimated, and the weighted sum for the neighborhood pixels is the final intensity value of the pixel to be interpolated. The proposed method has the structure suitable to practical implementation and can avoid the artifacts due to the wrong detection of edge direction. In the simulation, it showed improved subjective and objective performance than the ELA method and comparable performance compared with the variation of ELA method which has more complex structure and requires a couple of parameters that is determined by experience.

Reduction of Dynamic False Contours based on Gray Level Selection method in PDP (계조 수 감소를 이용한 PDP내에서 의사 윤곽 제거 기법)

  • Ahn Sang-Jun;Eo Yoon-Phil;Lee Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.716-725
    • /
    • 2005
  • In this paper, we propose a new approach for the reduction of the dynamic false contours, which detects and compensates false contour artifacts adaptively. First, we develop a simple but effective method to select the pixels that are likely to cause the motion artifacts, based on the distribution of pixel values. Then, we merge the selected pixels into several regions using tree structure. Next, we reduce number of gray levels within the regions slightly to reduce the false contours. Note that reducing number of gray levels yield the distortion, thus it is applied only to the selected regions, instead of the whole picture. Intensive simulations on real moving image show that the proposed algorithm alleviates the dynamic false contours effectively with tolerable computational complexity.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

GPGPU based Depth Image Enhancement Algorithm (GPGPU 기반의 깊이 영상 화질 개선 기법)

  • Han, Jae-Young;Ko, Jin-Woong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2927-2936
    • /
    • 2013
  • In this paper, we propose a noise reduction and hole removal algorithm in order to improve the quality of depth images when they are used for creating 3D contents. In the proposed algorithm, the depth image and the corresponding color image are both used. First, an intensity image is generated by converting the RGB color space into the HSI color space. By estimating the difference of distance and depth between reference and neighbor pixels from the depth image and difference of intensity values from the color image, they are used to remove noise in the proposed algorithm. Then, the proposed hole filling method fills the detected holes with the difference of euclidean distance and intensity values between reference and neighbor pixels from the color image. Finally, we apply a parallel structure of GPGPU to the proposed algorithm to speed-up its processing time for real-time applications. The experimental results show that the proposed algorithm performs better than other conventional algorithms. Especially, the proposed algorithm is more effective in reducing edge blurring effect and removing noise and holes.

Panoramic Image Stitching using Feature Extracting and Matching on Mobile Device (모바일 기기에서 특징적 추출과 정합을 활용한 파노라마 이미지 스티칭)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.97-102
    • /
    • 2016
  • Image stitching is a process of combining two or more images with overlapping area to create a panorama of input images, which is considered as an active research area in computer vision, especially in the field of augmented reality with 360 degree images. Image stitching techniques can be categorized into two general approaches: direct and feature based techniques. Direct techniques compare all the pixel intensities of the images with each other, while feature based approaches aim to determine a relationship between the images through distinct features extracted from the images. This paper proposes a novel image stitching method based on feature pixels with approximated clustering filter. When the features are extracted from input images, we calculate a meaning of the minutiae, and apply an effective feature extraction algorithm to improve the processing time. With the evaluation of the results, the proposed method is corresponding accurate and effective, compared to the previous approaches.

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.

Detecting and Restoring the Occlusion Area for Generating Digital Orthophoto (대축척 정사보정영상 생성을 위한 폐색지역 탐지 및 복원)

  • 조우석;장휘정
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.237-242
    • /
    • 2003
  • During the past, digital orthophoto is generated for rural area or low resolution image, because the accurate extraction of DEM is difficult for urban area. But, nowadays, high resolution DEM by ALS system starts to become available for urban area, so the importance of large scale digital orthophoto generation becomes increasing. In this paper, we propose and describe effective algorithm for detecting occlusion area and not only restoring occlusion area but also processing null pixels by occlusion area for minimizing the heterogeneity of digital orthophoto. With proposed algorithm, we detected occlusion area due to height of structures such as buildings, bridges, etc, and restored occlusion area using reference image. Also, The homogeneity of generated digital orthophoto was improved by using brightness correction.

  • PDF