• Title/Summary/Keyword: Effective penumbra

Search Result 15, Processing Time 0.021 seconds

Evaluation of the Small Field of for the Detector Type Medical Linear Accelerator (의료용 선형가속기의 소조사면에 대한 검출기 종류에 따른 평가)

  • Lee, Dong-Woon;Jung, Kang-Kyo;Shin, Gwi-Soon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently linear accelerator of radiation therapy intensity modulated radiation therapy, stereotactic radiation therapy are widely used. Such radiation treatment techniques are generally difficult to exclude the small field by using the inverse treatment plan. It is necessary to dose an accurate measurement of characteristics of the small field. Thus, using different detectors to measure the volume of the effective percentage depth dose, beam profile, and the output factor of the small field was to evaluate the dose characteristics of each detector. Experimental results for the X-ray beam 6 MV energy beam quality($PDD_{20}/PDD_{10}$) is $10{\times}10cm^2$ Diode detector is as high as 2.4% compared to Pinpoint detector. All field size to lesser effective volume of Diode detector shows that it is far better than other detectors by more than 50% of small penumbra, therefore spatial resolution far excellent. In field size $2{\times}2cm^2$ Semiflex detector was measured about 2% less than the other detector. Field size $1{\times}1cm^2$ is that there is no judgment about the validity show the difference between 20%. Field size $1{\times}1cm^2$ from the measured values of the Diode detector and Pinpoint detector showed a 13% difference. Less than field size $3{\times}3cm^2$ the feed to the difference between the output factor of the effective volume of the detector to be used for the effective volume available to the detector.

Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

  • Kim, Jae-Hyuk;Jo, Jung-Hyun;Choi, Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jang-Hyun;Park, Eun-Seo;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.319-332
    • /
    • 2011
  • The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observation time sufficient to maintain the precise ephemeris could be acquired at the determined observatories.

Experimental Analysis in the Reversible and Irreversible Cerebral Ischemic Models in the Rat (백서의 가역성 및 비가역성 뇌허혈 모형의 실험적 고찰)

  • Song, Kwang Chul;Choi, Byung Yon;Kim, Seong Ho;Bae, Jang Ho;Kim, Oh Lyong;Cho, Soo Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.853-860
    • /
    • 2000
  • Objective : The purpose of our experimental study was to analysis the advantages and disadvantages in the reversible and irreversible cerebral ischemic models with rats by staining with Neutral Red(NR) solusion, 2% 2,3,5-triphenyltetrazolium chloride(TTC) and Hematoxylin & Eosin(H & E). Methods : We have measured the range of cerebral infarction in the rat to get a suitable ischemic model along the object of study with and without craniectomy. With craniectomy, 9 rats were sacrificed for irreversible cerebral ischemic model by means of ligation at proximal(group I) and distal(group II), and coagulation at proximal(group III) middle cerebral artery. Also, 6 rats were sacrificed for irreversible(group IV) and reversible(group V) cerebral ischemic model using nylon thread without craniectomy. The sizes of infarction were measured by staining the coronal sections of the brain with NR solusion, TTC and H & E. Results : There are no difference of physiological parameters comparing the each group. Cerebral infarction was not observed in group II, but it's volume was largest in group IV. Disadvantages of craniectomy group(I, II, III) are the long duration of operation and cortical damage by procedure. It's advantage is confirmation of the middle cerebral artery occlusion and cessation of blood flow through the operative microscope. In case of ischemic models using nylon thread (group IV, V), it is hard to identify the interruption or recirculation of blood flow through the middle cerebral artery, but the advantage is the simplicity of operative technique which reduces the operation time and minimizes the cerebral damage due to craniectomy. Therefore, it seems important to set up the reversible and irreversible ischemic models by carefully considering advantages and disadvantages listed above. Conclusion : TTC staining seems to be effective since it reflects the histological damage sufficiently and quickly. It is hoped that researches focused on ischemic penumbra, which became popular recently, will be further carried on with use of NR staining, optical microscope and electron microscope.

  • PDF

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

An Effect of Time Gating Threshold (TGT) on the Delivered Dose at Internal Organ with Movement due to Respiration (호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold (TGT)의 효과)

  • Kim Yon Lae;Chung Jin Bum;Chung Won Kyun;Hong Semie;Suh Tae Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • In this study, we investigated the effect of time gating threshold on the delivered dose at a organ with internal motion by respiration. Generally, the internal organs have minimum motion at exhalation during normal breathing. Therefore to compare the dose distribution time gating threshold, in this paper, was determined as the moving region of target during 1 sec at the initial position of exhalation. The irradiated fields were then delivered under three conditions; 1) non-moving target 2) existence of the moving target in the region of threshold (1sec), 3) existence of the moving target region out of threshold (1.4 sec, 2 sec). And each of conditions was described by the moving phantom system. It was compared with the dose distributions of three conditions using film dosimetry. Although the treatment time increased when the dose distributions was obtained by the internal motion to consider the TGT, it could be obtained more exact dose distribution than in the treatment field that didn't consider the internal motion. And it could be reduced the unnecessary dose at the penumbra region. When we set up 1.4 sec of threshold, to reduce the treatment time, it could not be obtained less effective dose distribution than 1 sec of threshold. Namely, although the treatment time reduce, the much dose was distributed out of the treatment region. Actually when it is treated the moving organ, it would rather measure internal motion and external motion of the moving organ than mathematical method. If it could be analyzed the correlation of the internal and external motion, the treatment scores would be improved.

  • PDF