• Title/Summary/Keyword: Effective learning

Search Result 4,214, Processing Time 0.028 seconds

A narrative review on immersive virtual reality in enhancing high school students' mathematics competence: From TPACK perspective

  • Idowu David Awoyemi;Feliza Marie S. Mercado;Jewoong Moon
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.295-318
    • /
    • 2024
  • This narrative review explores the transformative potential of immersive virtual reality (IVR) in enhancing high school students' mathematics competence, viewed through the lens of the technological, pedagogical, and content knowledge (TPACK) framework. This review comprehensively illustrates how IVR technologies have not only fostered a deeper understanding and engagement with mathematical concepts but have also enhanced the practical application of these skills. Through the careful examination of seminal papers, this study carefully explores the integration of IVR in high school mathematics education. It highlights significant contributions of IVR in improving students' computational proficiency, problem-solving skills, and spatial visualization abilities. These enhancements are crucial for developing a robust mathematical understanding and aptitude, positioning students for success in an increasingly technology-driven educational landscape. This review emphasizes the pivotal role of teachers in facilitating IVR-based learning experiences. It points to the necessity for comprehensive teacher training and professional development to fully harness the educational potential of IVR technologies. Equipping educators with the right tools and knowledge is essential for maximizing the effectiveness of this innovative teaching approach. The findings also indicate that while IVR holds promising prospects for enriching mathematics education, more research is needed to elaborate on instructional integration approaches that effectively overcome existing barriers. This includes technological limitations, access issues, and the need for curriculum adjustments to accommodate new teaching methods. In conclusion, this review calls for continued exploration into the effective use of IVR in educational settings, aiming to inform future practices and contribute to the evolving landscape of educational technology. The potential of IVR to transform educational experiences offers a compelling avenue for research and application in the field of mathematics education.

Methodology for Variable Optimization in Injection Molding Process (사출 성형 공정에서의 변수 최적화 방법론)

  • Jung, Young Jin;Kang, Tae Ho;Park, Jeong In;Cho, Joong Yeon;Hong, Ji Soo;Kang, Sung Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Improving Remedial Measures from Incident Investigations: A Study Across Ghanaian Mines

  • Theophilus Joe-Asare;Eric Stemn
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Background: Learning from incidents for accident prevention is a two-stage process, involving the investigation of past accidents to identify the causal factors, followed by the identification and implementation of remedial measures to address the identified causal factors. The focus of past research has been on the identification of causal factors, with limited focus on the identification and implementation of remedial measures. This research begins to contribute to this gap. The motivation for the research is twofold. First, previous analyses show the recurring nature of accidents within the Ghanaian mining industry, and the causal factors also remain the same. This raises questions on the nature and effectiveness of remedial measures identified to address the causes of past accidents. Secondly, without identifying and implementing remedial measures, the full benefits of accident investigations will not be achieved. Hence, this study aims to assess the nature of remedial measures proposed to address investigation causal factors. Method: The study adopted SMARTER from business studies with the addition of HMW (H - Hierarchical, M - Mapping, and W - Weighting of causal factors) to analyse the recommendations from 500 individual investigation reports across seven different mines in Ghana. Results: The individual and the work environment (79%) were mostly the focused during the search for causes, with limited focus on organisational factors (21%). Forty eight percentage of the recommendations were administrative, focussing on fixing the problem in the immediate affected area or department of the victim(s). Most recommendations (70.4%) were support activities that only enhance the effectiveness of control but do not prevent/mitigate the failure directly. Across all the mines, there was no focus on evaluating the performance of remedial measures after their implementation. Conclusion: Identifying sharp-end causes leads to proposing weak recommendations which fail to address latent organisational conditions. The study proposed a guide for effective planning and implementation of remedial actions.

Research Trends and Tasks in the field of Reading Program in Korea (국내 독서 프로그램 분야의 연구 동향과 과제)

  • Pan Jun Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.2
    • /
    • pp.47-69
    • /
    • 2024
  • Despite many changes occurring in the objects and methods of reading, the importance of reading as the most effective means of developing human intellectual ability is consistently emphasized. However, in Korea, reading tends to be perceived as a part of tedious and rigid education or learning activities rather than an act of giving pleasure and joy while accompanied by fun and interest. In addition, compared to the high interest and emphasis on reading, discussions on reading programs to systematically implement them are relatively insufficient, and it is difficult to find a study in Korea that grasp the overall research trend in the field of reading programs. Accordingly, in order to generally examine research trends in the field of domestic reading programs, an intellectual structure analysis method based on keyword profiling was applied. In particular, basic analysis, keyword analysis, research area analysis, and analysis by period and year were performed in stages based on the keywords of theses and academic journal articles in the domestic reading program field retrieved from the RISS database. In addition, future research tasks were presented by comprehensively reviewing the research trends of domestic reading programs identified as a result of this intellectual structure analysis.

Utilizing the n-back Task to Investigate Working Memory and Extending Gerontological Educational Tools for Applicability in School-aged Children

  • Chih-Chin Liang;Si-Jie Fu
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.177-188
    • /
    • 2024
  • In this research, a cohort of two children, aged 7-8 years, was selected to participate in a specialized three-week training program aimed at enhancing their working memory. The program consisted of three sessions, each lasting approximately 30 minutes. The primary goal was to investigate the impact and developmental trajectory of working memory in school-aged children. Working memory plays a significant role in young children's learning and daily activities. To address the needs of this demographic, products should offer both educational and enjoyable activities that engage working memory. Digital educational tools, known for their flexibility, are suitable for both older individuals and young children. By updating software or modifying content, these tools can be effectively repurposed for young learners without extensive hardware changes, making them both cost-effective and practical. For example, memory training games initially designed for older adults can be adapted for young children by altering images, music, or storylines. Furthermore, incorporating elements familiar to children, like animals, toys, or fairy tales, can increase their engagement in these activities. Historically, working memory capabilities have been assessed predominantly through traditional intelligence tests. However, recent research questions the adequacy of these behavioral measures in accurately detecting changes in working memory. To bridge this gap, the current study utilized electroencephalography (EEG) as a more sophisticated and precise tool for monitoring potential changes in working memory after the training. The research findings were revealing. Participants showed marked improvement in their performance on n-back tasks, a standard measure for evaluating working memory. This improvement post-training strongly supports the effectiveness of the training program. The results indicate that such targeted and structured training programs can significantly enhance the working memory abilities of children in this age group, providing promising implications for educational strategies and cognitive development interventions.

Comparison of Pattern Design Functions in YUKA and CLO for CAD Education: Focusing on Skirt Patterns (캐드 교육을 위한 YUKA와 CLO의 패턴 제도 기능 비교: 스커트패턴을 중심으로)

  • Younglim Choi
    • Fashion & Textile Research Journal
    • /
    • v.26 no.1
    • /
    • pp.65-77
    • /
    • 2024
  • This study aimed to propose effective ways to integrate CLO into educational settings by conducting a comparative analysis of pattern functions in YUKA and CLO, specifically focusing on skirt prototypes and variations. CLO, being a 3D virtual sample CAD tool, is mainly used in education to facilitate the creation of 3D virtual clothing. In order to explore the applicability of CLO's pattern functions in pattern education, CAD education experts were asked to produce two types of skirt prototypes and two skirt variations. Subsequently, in-depth interviews were conducted. In addition, the skirt pattern creation process was recorded on video and used for comparative analysis of YUKA and CLO pattern functions. The comparison revealed that CLO provides the pattern tools necessary for drafting skirt prototypes. The learning curve for acquiring the skills necessary for drafting and transforming skirt prototypes was found to be relatively shorter for CLO compared to YUKA. In addition, due to CLO's surface-based pattern drawing method, it is difficult to move or copy only specific parts of the outline, and there are some limitations in drawing right angle lines. In the pattern transformation process, CLO's preview function proved to be advantageous, and it was highly rated on user convenience due to the intuitive UI. Thus, CLO shows promise for pattern drafting education and is deemed to have high scalability as it is directly linked to 3D virtual clothing.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

The Perception of Pre-service English Teachers' use of AI Translation Tools in EFL Writing (영작문 도구로서의 인공지능번역 활용에 대한 초등예비교사의 인식연구)

  • Jaeseok Yang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.121-128
    • /
    • 2024
  • With the recent rise in the use of AI-based online translation tools, interest in their methods and effects on education has grown. This study involved 30 prospective elementary school teachers who completed an English writing task using an AI-based online translation tool. The study focused on assessing the impact of these tools on English writing skills and their practical applications. It examined the usability, educational value, and the advantages and disadvantages of the AI translation tool. Through data collected via writing tests, surveys, and interviews, the study revealed that the use of translation tools positively affects English writing skills. From the learners' perspective, these tools were perceived to provide support and convenience for learning. However, there was also recognition of the need for educational strategies to effectively use these tools, alongside concerns about methods to enhance the completeness or accuracy of translations and the potential for over-reliance on the tools. The study concluded that for effective utilization of translation tools, the implementation of educational strategies and the role of the teacher are crucial.