• 제목/요약/키워드: Effective force area

검색결과 184건 처리시간 0.035초

경량골재 콘크리트를 활용한 중공 PPC 거더의 구조거동 평가 (The Evaluation of Structural Behavior of Hollowed PPC Girder Using Lightweight Aggregate Concrete)

  • 노병철;이경수;김익상;차광일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.75-81
    • /
    • 2011
  • 최근 건설되는 교량은 철근 콘크리트 대신에 주로 프리스트레스트 콘크리트 교량이 주종을 이루고 있다. 프리스트레스 콘크리트 (PSC)는 철근 콘크리트 (RC)가 지니는 균열발생 문제, 철근의 부식, 누수 등 내구성에 미치는 약점을 보완할 수 있다. 또한 프리스트레싱으로 인한 인장영역의 보완으로 인하여 구조물의 크기를 줄일 수 있다. 하지만 이러한 구조용 주재료인 고강도 콘크리트의 경우는 밀도가 강도에 비하여 상대적으로 크기 때문에 상대적으로 자중을 증대시키는 문제가 있다. 따라서 자중을 감소시킬 수 있는 경량골재를 활용한 중공형 PPC 거더 (Hollowed Prefabricated Prestressed Concrete girder systems using Light Aggregate, 이하 HPPCLA)는 이러한 문제점을 해결할 수 있는 대안이 될 수 있다. 본 연구에서는 HPPCLA 거더의 성능시험 뿐 만 아니라 수치해석을 수행하였으며, 그 결과 HPPCLA 거더는 전형적인 휨파괴 형상을 나타내었다. 수치해석에서 예상한 바와 같이 PPC 거더의 사용하중인 110 kN에서는 완전한 탄성거동으로 구조물의 사용성에는 무리가 없을 것으로 판단된다.

병렬 배치된 FLBT 및 LNG-BS에 작용하는 풍하중 및 조류하중에 대한 풍동 시험 및 경험식 비교 연구 (Wind tunnel test of wind loads and current loads acting on FLBT and LNG bunkering shuttles in side-by-side configuration and comparison with empirical formula)

  • 박병원;정재환;황성철;조석규;정동호;성홍근
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.266-273
    • /
    • 2017
  • In recent years, LNG bunkering terminals are needed to supply LNG as fuel to meet the emission requirements of the International Maritime Organization (IMO). A floating LNG bunkering terminal (FLBT) is one of the most cost-effective and environmentally friendly LNG bunkering systems for storing LNG and transferring it directly to an LNG fuel vessel. The FLBT maintains its position using mooring systems such as spread mooring and turret mooring. The loads on the vessel and mooring lines must be carefully determined to maintain their positions within the operable area. In this study, the wind loads acting in several side-by-side arrangements on the FLBT and LNG-BS were estimated using wind tunnel tests in the Force Technology, and the shielding effect due to the presence of ships upstream was evaluated. In addition, the empirical formulations proposed by Fujiwara et al. (2012) were used to estimate the wind force coefficients acting on the FLBT and those results were compared with experimental results.

Comparison of the effects of horizontal and vertical micro-osteoperforations on the biological response and tooth movement in rabbits

  • Kim, Seok-gon;Kook, Yoon-Ah;Lim, Hee Jin;Park, Patrick;Lee, Won;Park, Jae Hyun;Bayome, Mohamed;Kim, Yoonji
    • 대한치과교정학회지
    • /
    • 제51권5호
    • /
    • pp.304-312
    • /
    • 2021
  • Objective: This study aimed to compare the amount of tooth movement after multiple horizontal (MH) and single vertical (SV) micro-osteoperforations (MOPs), and evaluate the histological changes after orthodontic force application in rabbits. Methods: The mandibles of 24 white rabbits were subjected to two experimental interventions: MH and SV MOPs. Defect volume of the MOPs between the two groups was kept similar. A force of 100 cN was applied via a coil spring between the incisor teeth and the first premolars. The amount of tooth movement was measured. Differences in the amount of tooth movement and bone variables at three time points and between the two groups were evaluated using repeated-measures analysis of variance. Results: The first premolar showed a mesial movement of 1.47 mm in the MH group and 1.84 mm in the SV group, which was significantly different at Week 3 (p < 0.05). No significant difference was observed in bone volume and bone fraction between the groups. Tartrate-resistant acidic phosphatase-positive cell count was also significantly greater at Week 3 than at Week 1 in both the SV and MH groups. Conclusions: The amount of tooth movement showed significant differences between Weeks 1 and 3 in the SV and MH MOP groups, but showed no differences between the two groups. Therefore, SV MOP could be considered an effective tool for enhancing tooth movement, especially for molar distalization, uprighting, and protraction to an edentulous area.

The Effect of Task-oriented Training on Mobility Function, Postural Stability in Children with Cerebral Palsy

  • Kim, Ji-Hye;Choi, Young-Eun
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.79-84
    • /
    • 2017
  • PURPOSE: The purpose of this study is to examine how task-oriented training focused on lower extremity strengthening can affect mobility function and postural stability. METHODS: The study's subjects included 10 children with cerebral palsy: 7 girls and 3 boys between the ages of 4 and 9 whose Gross Motor Functional Classification System (GMFCS) level was I or II. Their functional mobility was gauged using the Gross Motor Function Measurement (GMFM), and their postural stability was evaluated using a force platform. Participants received task-oriented training focused on lower extremity strengthening for 5 weeks. The study used a paired t-test to investigate the difference in mobility function and postural stability of children with cerebral palsy before and after the lower extremity strengthening exercise. RESULTS: The GMFM dimensions D (standing) (p<.02) and E (walking) (p<.001) improved significantly between the pre-test and post-test. A significant increase in the posturographic center of pressure (CoP) shift and surface area of the CoP were found overall between the pre-test and post-test (p<.001). CONCLUSION: The present study provides evidence that an 8-week task-oriented training focused on strengthening the lower extremities is an effective and feasible strategy for improving the mobility function and postural stability of children with cerebral palsy.

New Fluid Flow System for Simulation of Mechanical Loading to Bone Cells During Human Gait Cycle

  • Ahn, Jae-Mok
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2007
  • Mechanical loading to bone cells using simple sine wave or constant wave fluid flow has been widely used for in vitro experiments. Human gait is characterized by a complex loading to bones of lower extremities which results from a series of events consisting of heel strike, foot flat and push-off during the stance phase of the gait cycle. Telemetric force analyses have shown that human femora are subject to multiphasic loading. Therefore, it would be ideal if the physiologic loading conditions during human walking can be used for in vitro mechanotransduction studies. Here, for a mechanotransduction study, we develop it fluid flow system (FFS) in order to simulate human physiologic mechanicalloading on bone cells. The development methods of the FFS including the COR (Center for Orthopedic Research), monitor program are presented. The FFS could generate various multiphasic loading conditions of human gaits with output flow. Wall shear distribution was very uniform, with 81 % of the effective loading area of the culture on a glass slide. Our results demonstrated that the FFS, provide a new translational approach for unveiling molecular mechanotransduction pathways in bone cells.

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

긴 관통자에 의한 유한박판 및 적층표적재의 관통현상 연구 (On the Penetration Phenomena for Thin and Multi-Layered Finite Thickness Plates by a Long Rod Penetrator)

  • 이창현;홍성인
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1759-1772
    • /
    • 1994
  • In this study, we re-examined the Tate's modified Bernoulli equation to study penetration phenomena for long rod projectile into single or multi-layered finite thickness plates. We used the force equlibrium equation at mushroomed nose/target interface instead of conventional pressure equation at the stagnation point. In our penetration model, we considered the velocity dependent $R_t$ value for semi-infinite target and considered only the back face effect for finite target. To compensate for $R_t$ value according to target's thickness and back face effect, we used the spherical cavity expansion theory for semi-infinite plate and used the cylindrical cavity expansion theory for finite plate. Also we developed the experimental technique using make screen to measure the penetration duration time at each layered plate. In 3-layered laminated RHA/mild steel/ A1 7039 plate, we observed that spall had occured around the back face of A1 7039 plate by the stress wave interaction. Through the comparison between theoretical and experimental data including Lambert's results, we conform that our study has good confidences.

지립을 이용한 초음파 디버링 기술 (Ultrasonic Deburring Technology Using abrasive)

  • 최헌종;이석우;최영재;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1848-1852
    • /
    • 2003
  • Generally, burrs refer to projected parts remained on the edge after material had been processed. These burrs decrease the precision of part and cause many problems in part assembly. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are a few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which removes burrs. Cavitations were used as a term to describe erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in deburring process. For this purpose, we introduce a new ultrasonic cavitation method with abrasive, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.

  • PDF

무윤활 수직-수평 복합하중 조건에서 재료조합에 따른 마모특성 변화에 관한 실험적 연구 (Experimental Study on Wear Behavior of Material Pairs under Normal and Sliding Mixed Loading Conditions)

  • 최성우;민준기;정일욱;박상후
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.131-137
    • /
    • 2009
  • A pair of connectors for transferring torque is widely used in various types of a mechanical system. By the repetition of mechanical contact between a pair of connector, wear occurs easily. This kind of defect sometimes can cause a serious problem of health in case of the connector is used in a refrigerator. In this work, the material combination of connectors was experimentally studied to reduce the amount of wear; for the combination of connectors, various types of engineering materials including polyacetal, polycabonate, stainless steel (STS-304), NiP coated STS-304, and STS-310 were evaluated to check each wear behavior. Also an effective method of wear test was suggested for precise controlling of wear conditions such as contact area, contact force, and relative motion speed. From the test results, it was found out that a pair of polyacetal to STS-304 and STS-310 showed the lowest specific wear rates among other pairs.