• Title/Summary/Keyword: Effective damping coefficient

Search Result 46, Processing Time 0.022 seconds

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석)

  • Jang, Seung-Yup;Yang, Sin-Chu;Park, Man-Ho;Joh, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

A study on the viscous torsional vibration damper in a high speed diesel engine (고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Comparison of Motion Control Capacity of Viscous and Viscoelastic Dampers for Lateral Loads (횡하중에 대한 점성 및 점탄성감쇠기의 진동제어성능의 비교)

  • Kim, Jin-Koo;Kim, Yu-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • In this study a structure with viscoelastic and viscous dampers with identical damping coefficient subjected to stationary seismic and wind load were analyzed in time and frequency-domain to compare motion control capability of viscous and viscoelastic dampers. The dampers were placed based on story drift and acceleration obtained from RMS responses. According to the analysis results, the motion control capability of viscous dampers turned out to be superior to that of the viscoelastic dampers for the case of seismic load. On the contrary, in case of wind load, the viscoelastic dampers were more effective in the mitigation of dynamic responses. However, it was also found that the differences were in a narrow margin.

  • PDF

Experimental study on seismic performance of steel reinforced concrete T-shaped columns

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.339-353
    • /
    • 2020
  • This study investigates the seismic performance of steel reinforced concrete (SRC) T-shaped columns under low cyclic loading tests. Based on test results of ten half-scale column specimens, failure patterns, hysteretic behavior, skeleton curves, ultimate strength, ductility, stiffness degradation and energy dissipation capacity were analyzed. The main variables included loading angles, axial compression ratios and steel ratios. The test results show that the average values of the ductility factor and the equivalent viscous damping coefficient with respect to the failure of the columns were 5.23 and 0.373, respectively, reflecting good seismic performance. The ductility decreased and the initial stiffness increased as the axial compression ratio of the columns increased. The strength increased with increasing steel ratio, as expected. The columns displaced along the web had higher strength and initial stiffness, while the columns displaced along the flange had better ductility and energy dissipation capacity. Based on the test and analysis results, a formula is proposed to calculate the effective stiffness of SRC T-shaped columns.

Determination of Structural Performance Point Utilizing The Seismic Isolation Rubber Bearing Design Method (면진격리 고무베어링 설계법을 이용한 구조물의 성능점 예측)

  • 김창훈;좌동훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • The seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for determination of the performance point of structures in a simpler way, such an adaptation may be possible for the fact that a structural system under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The superiority of the proposed method to the state-of-the-practice approach is that the reasonably accurate performance point can be obtained without constructing the so-called acceleration displacement response spectrum required in application of capacity spectrum method. The validity of the proposed approach was verified by comparing the predicted values to the exact ones presented in the literature.