• Title/Summary/Keyword: Effective compression ratio

Search Result 197, Processing Time 0.03 seconds

A Study on Design and Performance of an Ejector Using Cold Gas (상온 가스를 이용한 이젝터의 설계와 성능에 관한 연구)

  • Yu, Isang;Kim, Taewoan;Kim, Minseok;Ko, Youngsung;Kim, Sunjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.38-45
    • /
    • 2015
  • This paper describes an ejector design technique which used for simulating low pressure environment corresponding to high altitude. Also the ejector performance characteristics was investigated according to performance and geometric variables by cold gas flow test. Entrainment ratio, compression ratio and expansion ratio were designated as performance variables and an ejector gap ratio was designated as a geometric variable. A relationship between the performance variables to predict the ejector performance was identified and it was confirmed that the performance variables have much more effective than the ejector gap ratio through the ejector cold gas flow test.

Cyclic Liquefaction Behavior Characteristics of Saemangeum Dredged Sand (새만금 준설모래의 동적 액상화 거동 특성)

  • Jeong, Jin-Seob;Choi, Du-Hon;Park, Seung-Hae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • Undrained cyclic triaxial compression tests were performed on Saemangeum dredged sand to evaluate factors affecting liquefaction strength and liquefaction behaviour characteristics. The results of these tests show that cyclic liquefaction can occur not only very loose sand(Relative density is 30%) but also dense sand(Relative density is 70%). To evaluate effect of the over consolidation ratio on the liquefaction strength, a series of undrained cyclic triaxial compression test was peformed, and the result of this test showed that the liquefaction of this test showed that the liquefaction strength of Saemangeum dredged sand approximately increased to square root of over consolidation ratio in the range of O.C.R value of 1.0 to 4.0. In the anisotropically consolidated sample tests, the liquefaction strength is increased by increasing the effective consolidation ratio.

  • PDF

Back strength and relevance of CPR chest compression (배근력과 심폐소생술의 가슴압박과의 관련성)

  • Choi, Sung-Soo;Han, Mi-Ah;Yun, Seong-Woo;Ryu, So-Yeon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Purpose : The purpose of the study is to investigate the quality and relevance of back strength or chest compression which is applied by isotonic exercise of hip joint. Methods : Subjects were 37 students who participated in the BLS course and accepted the informed consent from December 7 to 8, 2012. During CPR performance, back strength was measured by the researcher. CPR was used the manikin for practical training with using PC, conducted by standard CPR for 2 minutes, Quality of chest compressions included average chest compression depth, rate, and recoil ratio. Results : Back strength (kg) is related to the chest compression depth (mm) (r =.746, p <.001). The high quality CPR is the most important factor so high quality is full chest recoil of chest compression and chest compression depth (mm) (${\beta}$=.831, p <.001). In this study, chest compression rate and recoil ration were not influenced by back muscle strength. Conclusion : It is necessary to implement the CPR program to improve physical strength and effective performance of CPR.

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE OPERATION WITH EXHAUST GAS RECIRCULATION

  • Choi, G.H.;Han, S.B.;Dibble, R.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. The objective of this research is to determine the effects of Exhaust Gas Recirculation (EGR) rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

Fabrication of micro lens array using micro-compression molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Moon, Su-Dong;Kang, Shin-Il;Yee, Young-Joo;Bu, Jong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

Fabrication of Micro Lens Array Using Micro-Compression Molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Gang, Sin-Il;Mun, Su-Dong;Lee, Yeong-Ju;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine (가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구)

  • Cha, Junepyo;Yoon, Sungjun;Lee, Seokhwon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Uniaxial Compression Behavior of Circular RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유시트로 구속된 원형 RC기둥의 일축압축 거동)

  • Han, Sang Hoon;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain curve is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with circular section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio, spiral area ratio, and concrete compressive strength are considered as the test variables. Experiment results indicate that CFS jacketing significantly enhances strength and ductility of concrete. In addition, the CFS-jacketed specimens with the spiral steel show the lower load increasement ratio than those without the spiral steel.