• 제목/요약/키워드: Effective bending spring

검색결과 18건 처리시간 0.028초

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

밴딩 전파 구동을 이용한 파리지옥 로봇의 소프트 모핑 동작 (Soft Morphing Motion of Flytrap Robot Using Bending Propagating Actuation)

  • 김승원;고제성;조맹효;조규진
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.168-174
    • /
    • 2012
  • This paper presents a bending propagating actuation using SMA (Shape Memory Alloy) spring for an effective shape transition of a flytrap-inspired soft morphing structure. The flytrap-inspired soft morphing structure is made from unsymmetric CFRP (Carbon Fiber Reinforced Prepreg) structure which shows bi-stability and snap-through phenomenon. For a thin and large curved bistable CFRP structure, SMA spring is more acceptable than SMA wire and piezoelectric actuator which used in previous investigations. A bending propagating actuation is proposed which can induce snap-through of the bi-stable CFRP structure effectively. From this research, effective shape transition of soft morphing structure is possible.

다단 회전체 계의 동적 모델 개선에 관한 연구 (An Improved Dynamic Model for Multi-Stepped Rotor System)

  • 홍성욱;최성환
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.107-113
    • /
    • 2006
  • This paper presents an efficient dynamic modeling method for multi-stepped rotor system using effective spring elements to take into account the structural weakening effect due to the steps. This paper demonstrates that the Timoshenko shaft model give rise to a significant error in the case of multi-stepped rotors. An effective bending spring model is introduced to represent the structural weakening effect in the presence of steps. The proposed modeling method is validated through a series of simulations and experiments. Finally, a spindle is dealt with as an analysis example.

Evaluation of Thermal Deformation Model for BGA Packages Using Moire Interferometry

  • Joo, Jinwon;Cho, Seungmin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.230-239
    • /
    • 2004
  • A compact model approach of a network of spring elements for elastic loading is presented for the thermal deformation analysis of BGA package assembly. High-sensitivity moire interferometry is applied to evaluate and calibrated the model quantitatively. Two ball grid array (BGA) package assemblies are employed for moire experiments. For a package assembly with a small global bending, the spring model can predict the boundary conditions of the critical solder ball excellently well. For a package assembly with a large global bending, however, the relative displacements determined by spring model agree well with that by experiment after accounting for the rigid-body rotation. The shear strain results of the FEM with the input from the calibrated compact spring model agree reasonably well with the experimental data. The results imply that the combined approach of the compact spring model and the local FE analysis is an effective way to predict strains and stresses and to determine solder damage of the critical solder ball.

알루미늄 합금의 일정 곡률 압출공정 개발 (Process Development of Constant Curvature Extrusion for Aluminum Alloy)

  • 조영준;이상곤;오개희;박상우;김병민
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.555-560
    • /
    • 2007
  • This paper shows some achievements at bending of extruded aluminum profiles during the extrusion process. The conventional process for the production of bent profiles involves a successive extrusion, stretching, and bending of the profiles. Conventional bending methods can not meet demands far precision and cost-effective production in some cases, due to cross sectional deformation, irregular decrease of tube wall thickness and a complication of the process design. An estimation of spring-back required for precision of the bending radius can not always be achieved by the over bending of the profile. Since the profile is hot during the bending process, the spring-back phenomenon can be avoided. This means that an additional bending process is not necessary. Consequently, flexible bending can be achieved with cost reduction and quality improvement. Experimental tests were completed to study the relationship between curvature radius of profile and position of guide on the extrusion for vehicle bumper. A7108 is applied as a billet material in order to increase strength. The overall correlation between the experimental and numerical results is good. It is therefore concluded that the present method provides an efficient means for the constant curvature extrusion process.

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

Non-Vinyl Pre-Coated Metal의 스크래치 특성에 관한 연구 (The Research of Scratch Characteristics For Non-Vinyl Pre-Coated Metal Sheet)

  • 김동환;조형근;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.874-877
    • /
    • 2000
  • Pre-coated sheet materials are a cost-effective and environmentally attractive alternative to conventional sheet materials coated after forming. At present but the high scratch sensitivity of coating used for pre-coated metal sheet is a major limitation to use of these materials. Because of high scratch sensitivity, products made by pre-coated metal sheet are not formed by conventional design method. This study has been performed to investigate scratch characteristic of non-vinyl pre-coated metal (PCM) sheet. Using the simple U-bending test equipment, three non-vinyls PCM's were tested. This paper provides the results of bending tests showing the influence of sheet surface texture, tool material and process conditions. It was found that the influence of punch, die clearance and tool material had an effect upon the scratch characteristic.

  • PDF

온간 쇼트피닝에 의한 압축잔류응력의 변화 (The Improvement of Compressive Residual Stress by Warm Shot Peening)

  • 이승호;심동석;김기전
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.273-278
    • /
    • 2004
  • The requirements of getting spring steel with higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increment in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. In this study, to investigate the effects of warm shot peening on increasing fatigue strength, tests are conducted on spring steel SAE9524. By the results of rotating bending fatigue tests, the fatigue strength increases up to 23.8% in warm shot peening specimens at $200^{\circ}C$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increment of the compressive residual stress, which can be effectively formed by shot peening under the condition of warm temperature than room temperature.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향 (An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs)

  • 김기전;정석주
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.