• Title/Summary/Keyword: Effective Stimulation Zone

Search Result 5, Processing Time 0.018 seconds

A Numerical Study on the Thermal Stimulation of Continuous Moxibustion (연속 뜸의 열 자극에 대한 수치해석)

  • Yang, So-Ra;Kang, Ho-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.915-922
    • /
    • 2011
  • In this paper, the unsteady incompressible Navier-Stokes equation coupled with energy equation was solved in order to investigate the thermal stimulation of continuous moxibustion using a commercial code (ANSYS-Fluent). In the simulations, various periods were selected for the continuous moxibustion, which was done by burning multiple disks successively. It has been found that the depth of the effective stimulation zone increases only when the replacing temperature is equal or larger than body temperature whereas the increase rate of the effective stimulation depth decreases as the number of disc increases. Further, it has been shown that the optimal period, for which the duration time of the effective stimulation zone is maximum, exists.

A Comparison of the Inhibitive Effect of High Voltage Pulsed Current Stimulation and Microcurrent Electrical Neuromuscular Stimulation on Bacterial Growth (고전압 맥동전류 자극과 미세전류 신경근 자극의 세균성장 억제효과 비교)

  • Kang, Eun-Jin;Roh, Jung-Suk;Lee, Jae-Seung;Yi, Chung-Hwi;Kim, Tae-Ho
    • Physical Therapy Korea
    • /
    • v.3 no.1
    • /
    • pp.12-23
    • /
    • 1996
  • High Voltage Pulsed Current Stimulation(HVPCS) and Microcurrent Electrical Neuromuscular Stimulation(MENS) have been used to promote the healing of decubitus ulcer and surgical wounds. The benefits of HVPCS and MENS are thought to include an inhibitive effect on bacterial growth. The purpose of this study was to compare the inhibitive effect of two different electrical stimulation techniques growth in vitro. Using agarose-based media, the two bacterial species Staphylococcus aureus, Esherichia coli - which are commonly isolated from open wounds were incubated in an incubator for 24 hours following exposure to HVPCS(400 V, 120 pps, $70{\mu}s$) and MENS($100{\mu}A$, 0.3 Hz). We then measured the zone of inhibition around each electrode. Both HVPCS and MENS produced an inhibitive effect on bacterial growth in this vitro study. However MENS was more effective than HVPCS.

  • PDF

New approach of using cortico-cortical evoked potential for functional brain evaluation

  • Jo, Hyunjin;Kim, Dongyeop;Song, Jooyeon;Seo, Dae-Won
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • Cortico-cortical evoked potential (CCEP) mapping is a rapidly developing method for visualizing the brain network and estimating cortical excitability. The CCEP comprises the early N1 component the occurs at 10-30 ms poststimulation, indicating anatomic connectivity, and the late N2 component that appears at < 200 ms poststimulation, suggesting long-lasting effective connectivity. A later component at 200-1,000 ms poststimulation can also appear as a delayed response in some studied areas. Such delayed responses occur in areas with changed excitability, such as an epileptogenic zone. CCEP mapping has been used to examine the brain connections causally in functional systems such as the language, auditory, and visual systems as well as in anatomic regions including the frontoparietal neocortices and hippocampal limbic areas. Task-based CCEPs can be used to measure behavior. In addition to evaluations of the brain connectome, single-pulse electrical stimulation (SPES) can reflect cortical excitability, and so it could be used to predict a seizure onset zone. CCEP brain mapping and SPES investigations could be applied both extraoperatively and intraoperatively. These underused electrophysiologic tools in basic and clinical neuroscience might be powerful methods for providing insight into measures of brain connectivity and dynamics. Analyses of CCEPs might enable us to identify causal relationships between brain areas during cortical processing, and to develop a new paradigm of effective therapeutic neuromodulation in the future.

Effects of Angelica sinensis Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

  • Lee, Donghun;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.32 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Objectives : This study aimed to investigate the effects of Angelicae sinensis Radix on longitudinal bone growth rate in rats. We have screened traditional medicinal herbs to develop the longitudinal bone growth stimulator by well-established rat model. A. sinensis was identified as one of the effective herbs in the screening process. Methods : Adolescent female rats were administered A. sinensis at doses of 30 mg/kg and 300 mg/kg for 10 consecutive days. To observe the rate of longitudinal bone growth, tetracycline was injected intraperitoneally on day 8 to stain a fluorescent band on the anew formed bone. To elucidate the mode of action, we observed insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) expression after A. sinensis administration in growth plate. Results : In the 300 mg/kg A. sinensis group, the length between the proximal endpoint of the tetracycline label and the division line between growth plate and bone was significantly increased compared with vehicle-treated control group. Height of the proximal tibial growth plate was higher in the A. sinensis group compared with control group. A. sinensis also upregulated the expressions of IGF-1 and BMP-2 in the proliferative zone and hypertrophic zone of the proximal tibial growth plate. Conclusions : A. sinensis increases longitudinal bone growth rate in rats. According to immunohistochemistry, A. sinensis increases local IGF-1 and BMP-2 expressions in the growth plate which can be considered as direct stimulation of GH on the local growth plate.

The Study for Performance TestㆍVerification Standard, Form approval procedure(draft) of OSBA (생물정화제제의 성능시험ㆍ검정기준, 형식승인절차(안) 등에 관한 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.16-27
    • /
    • 2003
  • For the last decade, some 400 small and large oil spill accidents have occurred every year. Such accident blow a serious damage to the marine resource and ecosystem, which can't be estimated in terms of economic and environmental losses. The physical/chemical methods used currently may be effective at the initial stage of accidents, but they can't serve to remove the spilled oil completely. Moreover, the dispersant may lead to a secondary contamination detrimental to the lives inhabiting wet lands, beaches and tidal zone. Thus, a new decomposing technology Is required for the environmentally sensitive areas. Bioremediation is the active use of biological techniques to mitigate the consequences of a spill using biological processes and refers both of stimulation of pollutant biodegradation and/or to enhance ecosystem recovery Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF