• 제목/요약/키워드: Effective Number of Cylinders

검색결과 8건 처리시간 0.027초

부분부하와 무부하에서의 가변 배기량기관의 성능특성 (Performance Characteristics of a Variable Displacement Engine at Part-Load and Idle)

  • 한성빈;이성열
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.232-239
    • /
    • 1994
  • This paper presents an effective way of improving fuel consumption for a variable displacement engine. The improvement of fuel consumption can be accomplished by means of deactivating inlet and exhaust valves, reducing the number of effective cylinders of a four-cylinder gasoline engine that is mounted on a domestic compact automobile.

Riblet 홈을 가진 원주의 저항감소에 관한 연구 (An Experimental Study on Drag Reduction of Grooved Cylinders)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.508-513
    • /
    • 2000
  • An experimental investigation has been carried out for two circular cylinders having different groove configurations(U and V-shape). The results were compared with those for the smooth circular cylinder. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number $Re=8000{\sim}14,000$ based on the cylinder diameter. As a results, the U-groove circular cylinder was found to be most effective riblet shape with reducing the drag up to 21%. As the Reynolds number increases, the vortex shedding frequency of the grooved cylinders becomes a little larger, compared to the smooth cylinder. The flow visualization using the smoke-wire technique was also carried out to see the flow structure qualitatively.

  • PDF

Effects of corner cuts and angles of attack on the Strouhal number of rectangular cylinders

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제6권2호
    • /
    • pp.127-140
    • /
    • 2003
  • An investigation into the effect of corner cuts on the Strouhal number of rectangular cylinders with various dimensional ratios and various angles of attack is described. The Strouhal number given as a function of corner cut size is obtained directly from the aerodynamic behavior of the body in a uniform flow through a series of wind-induced vibration tests. For a quick verification of the validity of the Strouhal numbers obtained in this way, they are compared with the approximated the Strouhal numbers based on Shiraishi's early research. The test results show that the Strouhal number of the model with various corner cuts has a fluctuating trend as the angle of attack changes. For each cutting ratio as the angle of attack increases at each cutting ratio above $15^{\circ}$, the Strouhal number decreases gradually, and these trends are more evident for larger corner cut sizes. However, a certain corner cut size which is effective in reducing the wind-induced vibration can be identified by larger Strouhal numbers than those of other corner cut sizes. Three distinct characteristics of Strouhal number variation can be identified in three regions which are termed as Region I, II, and III based on the general trend of the test results. It is also found that the corner cut is effective in one region (Region-II) and less effective in another one (Region-III) when only the vortex-induced vibration occurs.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

음파 가진을 이용한 2차원 웨이크 유동 제어에 관한 연구 (A study on 2-D wake flow control by acoustic excitation)

  • 김현진;김재호;김명균
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.860-873
    • /
    • 1998
  • In a low speed open-type wind tunnel, a group of parallel wakes downstream of two dimensional grid model consisting of several circular cylinders were experimentally investigated to study the response of the wake flows to the acoustic excitation, in hoping to promote the understanding of the underlying mechanism behind the gross flow change due to artificial excitation. In the unexcited wake flows, the development of the individual wakes behind cylinders was almost uniform for the ratio of the spacing to the cylinder diameter of s/d.geq.1.5. For smaller s/d, however, the jet streams issued through the gaps between the cylinders became biased in one side and the cylinders had wakes of different sizes. At s/d=1.25, the gap flow directions change in time, leading to unstable wake patterns. Further reduction in s/d made this unstable flip-flopping of the jets stable. The most effective excitation frequency was found to be in the Strouhal number range of St=0.5-0.6. This frequency was related to the vortex shedding. At s/d=1.75, the excitation frequency was 2 or 4 times the vortex shedding frequency. When the flow was excited at this frequency, the vortex sheddings were energized, and pairings between neighboring vortices were generated. Also, the merging process between individual wakes was accelerated. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. For smaller spacing of s/d .leq,1.0, the acoustic excitation became less effective in controlling the flow.

평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구 (Flow Around an Elliptic Cylinder Placed Near a Plane Boundary)

  • 김성민;이상준
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

휘싱 트래클 릴 프레임홀 면의 디버링특성 (Deburring Characteristics of Frame Hole in Fishing Trackle Reel)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.203-208
    • /
    • 1998
  • Materials of the Frame hole in fishing trackle reel is made up a number large and small holes. Thus, it is difficult to effective machining. Abrasive flow machining(AFM) is useful to polish a internal or external surface of the 3-dimensional shape parts, which are used in many fields such as aerospace, automative, semi-conductor, and medical component industries. The machining process is that two hydraulic cylinders, which are located face to face, enforce abrasive media to the passage between workpiece and tooling parts alternately, and then the abrasives include in the media pass the passage and polish the surface of workpiece. The media which is made of polymer and abrasives plays the role of the tool for deburring or polishing complex shap workpiece by its viscoelastic characteristics. In this study, the abrasive media for abrasive flow machining was made by mixing viscielastic polymer with alunina and silicon carbide abrasive. Also, we present AFM device design and preliminary results of an investigation in to some aspects of the AFM process performance in fishing trackle reel.

  • PDF

방파제의 효율적 배치를 알아보기 위한 실린더의 2차원 유동분석 (Numerical analysis of the cross-flow past circular cylinders at low Reynolds number for effective breakwater arrangement)

  • 천수민;최윤영
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.568-573
    • /
    • 2014
  • 본 연구에서는 원형으로 모델링 된 실린더들에 균일한 유동이 흐를 때, 실린더들의 배치에 따른 이차원 층류 유동을 분석하였다. EDISON_CFD를 이용해서 실린더간의 거리와 주기적 배열에 따라 개별 실린더들의 항력계수와 평균 항력계수의 분석을 통해 항력계수가 최대가 되는 실린더 배열을 확인하였다. 이를 위해 계산영역과 최대격자수에 따른 정확도를 분석하였다. 가로 배열(tandem position)에서의 효율적 항력 거리를 확인하였다. 세로 배열(side-by-side position)에서의 효율적 항력 거리를 확인하였다. 위의 결과들로 9개의 실린더를 3개씩 3열로 배치하고, 주기적 배열과 엇갈림 배열로 나누어 효율적 항력 배치를 확인하였다.

  • PDF